
Computational Optimization Methods in Statistics, Econometrics and Finance

www.comisef.eu

WPS-008 15/02/2009

M. Gilli
E. Schumann

- Marie Curie Research and Training Network funded by the EU Commission through MRTN-CT-2006-034270 -

Implementing Binomial Trees ⋆

Manfred Gilli a and Enrico Schumann b,∗

aDepartment of Econometrics, University of Geneva and Swiss Finance Institute

bDepartment of Econometrics, University of Geneva

Abstract

This paper details the implementation of binomial tree methods for the pricing of
European and American options. Pseudocode and sample programmes for Matlab

and R are given.

First version: 11 February 2009. Last changes: 15 February 2009.

Key words: Option pricing, Binomial trees, Numerical methods, Matlab, R

JEL codes: G13

⋆ Both authors gratefully acknowledge financial support from the EU Commission
through MRTN-CT-2006-034270 COMISEF. See http://comisef.eu.
∗ Corresponding author: Department of Econometrics, University of Geneva, Bd
du Pont d’Arve 40, 1211 Geneva 4, Switzerland. Tel.: + 41 22 379 8218; fax:
+ 41 22 379 8299.

Email addresses: Manfred.Gilli@unige.ch (Manfred Gilli),
Enrico.Schumann@unige.ch (Enrico Schumann).

Abbreviations

C call
P put
S spot
X strike
τ time to maturity
D dividend amount (in currency)
q dividend yield
r riskfree rate
△t a small time step
t a point in ‘natural’ time
i, j iterators; points on the lattice

1 Motivation

Binomial trees serve as both an intuitive approach to explain the logic behind
option pricing models and as a versatile computational technique. This paper
describes briefly how to implement such models. All algorithms are given in
pseudocode; some sample codes are given for Matlab and R (R Development
Core Team, 2008).1 We start with the Black–Scholes–Merton option pricing
model: for one, this gives a natural benchmark to judge the quality of our trees;
secondly, it is easy then to demonstrate the flexibility inherent in tree-models.

The binomial model assumes that, over a short period of time △t, a financial
asset’s price S either rises by a small amount, or goes down a small amount,
as pictured below. The probability of an uptick is p, while a downtick occurs
with probability 1 − p. (Probabilities here are generally risk neutral ones.)

S

△t

Sup with p

Sdown with 1 − p

Such a model for price movements may either be additive (ie, absolute move-
ments) or multiplicative (ie, relative movements). ‘Additive’ and ‘multiplica-
tive’ here refers to units of the observed price; computationally, a multiplica-
tive model can be changed into an additive one by taking logarithms or simi-
lar transformations. There are two objections against additive models: a price
could become negative, and the magnitude (in currency units) of a price change
does not depend on the current price. Hence, a AC 1 move is as likely for a
stock of AC 5 as for a stock of AC 500, which, empirically, is not the case. Still,
for very short time periods an additive model may be just as good as a mul-

1 We used Matlab R2007a and R 2.8.1.

2

tiplicative one. In fact, the additive model may be even better at capturing
market conventions (eg, prices in certain markets may move by fixed currency
amounts) or institutional settings (eg, when modelling central banks’ interest
rate setting). Still, we will discuss multiplicative models; the implementation
of additive models requires only minor changes in the procedures described
below. We will usually assume that S is a share price, even though the model
may be applied to other types of securities as well.

We want to find the price, and later on the Greeks, of plain vanilla call and
put options. Now is time 0, the option expires at τ . The time until expiration
is divided into a number M of periods; with M = 1, we have △t= τ , else
△t= τ/M. The subscript t differentiates the symbol for a short period of time
from the symbol for delta, ∆, that will be used later.

Matching Moments

We start with a tree for a Black–Scholes–Merton world, thus we want to match
the mean and variance of the returns of S in our tree to a given mean and
variance σ2 in a continuous time world. Let u and d be the gross returns of S
in case of an uptick and downtick, respectively. With M = 1 and the current
price S0, we have

E

(

S△t

S0

)

= pu + (1 − p)d , (1a)

Var

(

S△t

S0

)

=
1

S2
0

Var(S△t
) = pu2 + (1 − p)d2 −

(

pu + (1 − p)d
)2

. (1b)

where we have used

Var(S△t
) = S2

0

(

pu2 + (1 − p)d2
)

︸ ︷︷ ︸

E(S2
△t

)

−S2
0

(

pu + (1 − p)d
)2

︸ ︷︷ ︸

(E S△t)
2

to obtain Equation (1b). Here, E and Var are the expectations and variance
operator, respectively.

In a risk neutral world with continuous time, the mean gross return is er△t ,
where r is the riskfree rate. So with Equation (1a),

pu + (1 − p)d = er△t . (2)

Thus we have an equation that links our first target moment, the mean return,
with the tree parameters p, u and d.

In the Black–Scholes–Merton model we have lognormally distributed stock

3

prices with variance

Var(S△t
) = S2

0e
2r△t(eσ2

△t − 1) = S2
0(e

2r△t+σ2
△t − e2r△t) .

Dividing by S2
0 and equating to Equation (1b), we obtain

pu2 + (1 − p)d2 = e2r△t+σ2
△t , (3)

which links our second target moment, σ2, with our tree parameters. We now
have two equations, (2) and (3), from which we try to infer the values for p, u,
and d, hence there is an infinity of possible specifications for the tree. Different
authors introduce different restrictions to obtain a solution. One possible (and
probably the best-known) assumption, made by Cox et al. (1979), is that

ud = 1 .

We obtain

p =
er△t − d

u − d

from Equation (2); for u and d, Cox et al. (1979) suggest the approximative
solutions

u = eσ
√

△t ,

d = e−σ
√

△t .

These parameter settings ensure that Equation (2) is satisfied exactly, and
Equation (3) approximately (with the approximation improving for decreas-
ing △t and becoming exact in the limit). See Jabbour et al. (2001) for a
discussion of these and other possible parameter settings.

2 Growing the tree

When we increase the number of periods, △t= τ/M becomes smaller. The
following figure shows the resulting prices for M = 4.

0

△t

1 2 3 4 i

S

uS

dS

u2S

S

d2S

u3S

uS

dS

d3S

u4S

u2S

S

d2S

d4S

(0,0)

(1,1)

(1,0)

(2,2)

(2,1)

(2,0)

(3,3)

(3,2)

(3,1)

(3,0)

(4,4)

(4,3)

(4,2)

(4,1)

(4,0)

0 1 2 3 4 i

0

1

2

3

4

j

4

The graphic on the right gives a convenient form to visualise and work with
the resulting tree. The node (i, j) represents the asset price after i periods
and j upticks, that is

Si,j = Sujdi−j .

A time step on the grid is labelled i, which translates into a ‘real’ time point
as

t = τ
i

M
= i △t .

Note that there is also an equally-shaped tree for the option prices; in this
option tree every node corresponds exactly to a node in the stock price tree.
Furthermore, in this tree, the parameters (u, d, p) stay unchanged at every
node. Thus, the volatility (ie, the volatility that is inserted in Equation (1b)
to obtain the model parameters) is constant, as in the Black–Scholes–Merton
model. (The volatility at a certain node is also called ‘local volatility’.)

2.1 Implementing a tree

We start with computing the current price C0 of a European call; Algorithm 1
gives the procedure for given values of the spot price S, the strike X, the
volatility σ, the riskfree rate r and time to maturity τ .

Algorithm 1 European call for S, X, r, σ, τ and M time steps

1: initialise △t= τ/M , S0,0 = S, v = e−r△t

2: compute u = eσ
√

△t , d = 1/u, p = (er△t − d)/(u − d)
3: SM,0 = S0,0d

M

4: for j = 1 : M do

5: SM,j = SM,j−1 u/d # initialise asset prices at maturity
6: end for

7: for j = 0 : M do

8: CM,j = max(SM,j − X, 0) # initialise option values at maturity
9: end for

10: for i = M − 1 : −1 : 0 do

11: for j = 0 : i do

12: Ci,j = v
(
p Ci,j+1 + (1 − p) Ci,j

)
step back through the tree

13: end for

14: end for

15: C0 = C0,0

For the price of a put, we only have to replace max(SM,j − X, 0) in Statement 8
by max(X − SM,j, 0).

2.1.1 Numerical implementation

An implementation in Matlab may look as follows.

5

1 function C0 = EuropeanCall(S0 ,X,r,tau ,sigma ,M)

2 % version: 14 Feb 2009

3 % compute constants

4 f7 = 1; dt = tau / M; v = exp(-r * dt);

5 u = exp(sigma*sqrt(dt)); d = 1 /u;

6 p = (exp(r * dt) - d) / (u - d);

7

8 % initialise asset prices at maturity (period M)

9 S = zeros(M + 1,1);

10 S(f7+0) = S0 * d^M;

11 for j = 1:M

12 S(f7+j) = S(f7+j - 1) * u / d;

13 end

14

15 % initialise option values at maturity (period M)

16 C = max(S - X, 0);

17

18 % step back through the tree

19 for i = M-1: -1:0

20 for j = 0:i

21 C(f7+j) = v * (p * C(f7+j + 1) + (1-p) * C(f7+j));

22 end

23 end

24 C0 = C(f7+0);

A few remarks: Several of the loops in Algorithm 1 start counting from or
to 0, which is a convenient way for notation, but does not conform well with
how vectors and matrices are indexed in Matlab or R. A helpful ‘trick’ is to
use an offsetting constant (f7). This is added to an iterator and allows to
quickly code an algorithm while reducing errors (later on one may dispose of
the constant).

It is not necessary to store the complete matrices of stock and option prices, it
is enough to keep one vector that is updated while stepping through the tree.
Note in particular that we do not need to update the stock prices, only the
option prices are computed afresh in every time step. The algorithm could be
accelerated by also precomputing quantities like (1−p) or, since we discount in
every period by e−r△t , by leaving out the periodic discount factor v and instead
discount C0 by e−rτ . Such changes would, however, only marginally improve
the performance while rather obscuring the code; thus, we leave them out here.

Vectorisation We do not exploit any special structure in Matlab (ie, we do
not vectorise), even though the inner loop could be avoided by realising that
for every time step i, we have

er△t

Ci,i

Ci,i−1

...

Ci,1

Ci,0

︸ ︷︷ ︸

V

= p

Ci+1,i+1

Ci+1,i

...

Ci+1,2

Ci+1,1

︸ ︷︷ ︸

V +

+(1 − p)

Ci+1,i

Ci+1,i−1

...

Ci+1,1

Ci+1,0

︸ ︷︷ ︸

V −

,

6

which is illustrated below for i = 2.

}

V
+

V

{

V
−

{

0 1 2 3 4 i

0

1

2

3

4

j

Some testing showed that implementing this approach does not improve per-
formance (in version R2007a), even though in older versions of Matlab it did
(see Higham (2002)). Hence, we keep the double-loop structure.

The same does not hold in R (version 2.8.1); here the nested loops are much
slower than the vectorised version.

1 EuropeanCall <- function(S0 ,X,r,tau ,sigma ,M)

2 {

3 # version: 14 Feb 2009

4 # compute constants

5 f7 <- 1; dt <- tau / M; v <- exp(-r * dt)

6 u <- exp(sigma * sqrt(dt)); d <- 1 /u

7 p <- (exp(r * dt) - d) / (u - d)

8

9 # initialise asset prices at maturity (period M)

10 S <- numeric(M + 1)

11 S[f7+0] <- S0 * d^M

12 for (j in 1:M){

13 S[f7+j] <- S[f7+j - 1] * u / d

14 }

15

16 # initialise option values at maturity (period M)

17 C <- pmax(S - X, 0)

18

19 # step back through the tree

20 for (i in seq(M-1,0,by=-1)){

21 C <- v * (p * C[(1+f7):(i+1+f7)] + (1-p) * C[(0+f7):(i+f7)])

22 }

23 return(C)

24 }

The prices at period M (Statements 10–14 in the R-code) could be initialised
by the more efficient vectorised command S <- S0 * u^(0:M) * d^(M:0).

2.2 Binomial expansion

Algorithm 1 only uses the stock prices at τ . These prices are, in turn, computed
from the current price, S0,0. Since the number of stock paths reaching final
node j is given by

(

M

j

)

=
M !

(M − j)!j!

7

we can write

C0,0 = e−rτ
M∑

k=0

(

M

k

)

pk(1 − p)M−kCM,k (4)

where CM,k = max(ukdM−kS−X, 0) is the payoff of the call option, evaluated
at the respective final node. There is, in fact, no need to sum over all end
nodes, but it suffices to select those where the option expires in the money.

Such an implementation of a ‘tree’ loses the possibility of including early
exercise features (see below). It demonstrates the flexibility of the binomial
method, though, since nothing limits us to plain vanilla payoffs max(S−X, 0)
(or max(X − S, 0) for the put). An example may be a ‘power option’ whose
payoff (for the call) is given by

max(Sz − X, 0)

where z is a real number (usually an integer) greater than one.

2.2.1 Numerical implementation

A straightforward implementation of Equation (4) may lead to an overflow
since, as the number of time steps grows, ever larger integers are required
for the binomial coefficient (see Higham (2002) for a detailed discussion of
ways to circumvent these problems in Matlab; see Staunton (2003) for Excel

experiences).

The following Matlab-implementation is based on Higham (2002).

1 function C0 = EuropeanCallBE(S0 ,X,r,tau ,sigma ,M)

2 % version: 14 Feb 2009

3 % compute constants

4 dt = tau / M;

5 u = exp(sigma*sqrt(dt)); d = 1 /u;

6 p = (exp(r * dt) - d) / (u - d);

7

8 % initialise asset prices at maturity (period M)

9 C = max(S0*d.^((M:-1:0) ’).*u.^((0:M)’) - X,0);

10

11 % log/cumsum version

12 csl= cumsum(log ([1;[1:M]’]));

13 tmp= csl(M+1) - csl - csl(M+1: -1:1) + log(p)*((0:M) ’) + log(1-p)*((M:-1:0) ’);

14 C0 = exp(-r*tau)*sum(exp(tmp).*C);

An R-adaptation of this code follows.

1 EuropeanCallBE <- function(S0 ,X,r,tau ,sigma ,M)

2 {

3 # version: 14 Feb 2009

4 # compute constants

5 dt <- tau / M

6 u <- exp(sigma*sqrt(dt))

7 d <- 1 /u

8 p <- (exp(r * dt) - d) / (u - d)

9

8

10 # initialise asset prices at maturity (period M)

11 C <- pmax(S0 * d^(M:0) * u^(0:M) - X, 0)

12

13 # log/cumsum version

14 csl <- cumsum(log(c(1,1:M)))

15 tmp <- csl[M+1] - csl - csl[(M+1):1] + log(p)*(0:M) + log(1-p)*(M:0)

16 C0 <- exp(-r*tau)*sum(exp(tmp)*C)

17 return(C0)

18 }

3 Early excercise

Early exercise features are easily implemented in the binomial method; the
original paper by Cox et al. (1979) advocated the method exactly because of
this possibility. What is required is that when we compute the new option
price at a specific node, we check whether the payoff from exercising is greater
than the current value of the option. Thus we need to go through the tree, we
cannot use the binomial expansion. It is also necessary to update the spot price
at every node. Algorithm 2 details the necessary changes in the procedure.

Algorithm 2 Testing for early exercise: An American put
· · ·
for i = M − 1 : −1 : 0 do

for j = 0 : i do

Ci,j = v
(
p Ci,j+1 + (1 − p) Ci,j

)

Si,j = Si,j/d
Ci,j = max(Ci,j , X − Si,j)

end for

end for

· · ·

The following Matlab code can be used to price an American put.

1 function P0 = AmericanPut(S0 ,X,r,tau ,sigma ,M)

2 % version: 14 Feb 2009

3 % compute constants

4 f7 = 1; dt = tau / M; v = exp(-r * dt);

5 u = exp(sigma * sqrt(dt)); d = 1 / u;

6 p = (exp(r * dt) - d) / (u - d);

7

8 % initialise asset prices at maturity (period M)

9 S = zeros(M + 1,1);

10 S(f7+0) = S0 * d^M;

11 for j = 1:M

12 S(f7+j) = S(f7+j - 1) * u / d;

13 end

14

15 % initialise option values at maturity (period M)

16 P = max(X - S, 0);

17

18 % step back through the tree

19 for i = M-1: -1:0

20 for j = 0:i

21 P(f7+j) = v * (p * P(f7+j + 1) + (1-p) * P(f7+j));

22 S(f7+j) = S(f7+j) / d;

9

23 P(f7+j) = max(P(f7 + j),X - S(f7+j));

24 end

25 end

26 P0 = P(f7+0);

4 Dividends

4.1 Continuous dividends

If the dividend of the asset can be approximated by a continuous dividend
yield q, the algorithms need only slightly be changed. In a risk neutral world,
the drift of a dividend-paying asset changes from r to r − q; hence we replace
any r by r − q in the tree parameters u, d and p.

4.2 Discrete dividends

Assume the asset pays a discrete dividend, that is a fixed currency amount D,
at some future time τD (where 0 < τD < τ). Algorithm 3 describes how to
implement the ‘escrowed dividend model’ for an American call option.

Algorithm 3 American call for S, X, r, σ, τ , τD, D and M time steps

1: initialise △t= τ/M , S0,0 = S, v = e−r△t

2: compute u = eσ
√

△t , d = 1/u, p = (er△t − d)/(u − d)
3: compute S0,0 = S − De−rτD # adjust spot for dividend
4: SM,0 = S0,0d

M

5: for j = 1 : M do

6: SM,j = SM,j−1 u/d
7: end for

8: for j = 0 : M do

9: CM,j = max(SM,j − X, 0)
10: end for

11: for i = M − 1 : −1 : 0 do

12: for j = 0 : i do

13: Ci,j = v
(
p Ci,j+1 + (1 − p) Ci,j

)

14: Si,j = Si,j/d
15: compute t = iτ/M # compute current time
16: if t < τD

17: Ci,j = max(Ci,j , Si,j + De−r(τD−t) − X) # before dividend
18: else

19: Ci,j = max(Ci,j , Si,j − X) # after dividend
20: end if

21: end for

22: end for

23: C0 = C0,0

10

In Matlab:

1 function C0 = AmericanCallDiv (S0 ,X,r,tau ,sigma ,D,tauD ,M)

2 % version: 14 Feb 2009

3 % compute constants

4 f7 = 1; dt = tau / M; v = exp(-r * dt);

5 u = exp(sigma*sqrt(dt)); d = 1 /u;

6 p = (exp(r * dt) - d) / (u - d);

7

8 % adjust spot for dividend

9 S0 = S0 - D * exp(-r * tauD);

10

11 % initialise asset prices at maturity (period M)

12 S = zeros(M + 1,1);

13 S(f7+0) = S0 * d^M;

14 for j = 1:M

15 S(f7+j) = S(f7+j - 1) * u / d;

16 end

17

18 % initialise option values at maturity (period M)

19 C = max(S - X, 0);

20

21 % step back through the tree

22 for i = M-1: -1:0

23 for j = 0:i

24 C(f7+j) = v * (p * C(f7+j + 1) + (1-p) * C(f7+j));

25 S(f7+j) = S(f7+j) / d;

26 t = tau * i / M;

27 if t > tauD

28 C(f7+j) = max(C(f7 + j), S(f7+j) - X);

29 else

30 C(f7+j) = max(C(f7 + j), S(f7+j) + D*exp(-r * (tauD -t)) - X);

31 end

32 end

33 end

34 C0 = C(f7+0);

5 The Greeks

The Black–Scholes–Merton option price is a function v of the spot price S, the
strike X, the (constant) volatility σ, the riskfree rate r and time to maturity τ .
(If the underlyer pays dividends, these will also affect the value of v.)

A Taylor series expansion can be used to estimate the sensitivity of v to a
given change in one of the parameters. The change in the option price is then
a function of the (mathematical) derivatives of v, evaluated at the current
values of the arguments. These derivatives are known as the ‘Greeks’, and
for Black–Scholes–Merton the most common ones are available in closed form
(see the Appendix). For the binomial model, the Greeks need in general be

11

approximated by finite differences, that is we need to compute

vx(x, y) ≃v(x + h, y) − v(x, y)

h
, (5a)

vx(x, y) ≃v(x, y) − v(x − h, y)

h
or (5b)

vx(x, y) ≃v(x + h, y) − v(x − h, y)

2h
. (5c)

These equations give the forward, backward and central finite differences, re-
spectively. The symbol vx is the partial derivative of v with respect to x, with
h a small change in x and all other arguments collected in y. One advan-
tage of this approach over the analytical expressions is that h can be set to a
‘meaningful’ change: for instance, the Θ may be computed for one day hence,
which may be more reasonable (and easier to communicate to a trader) than
a change of infinitesimally small size.

Unfortunately, such a straightforward implementation of finite differences re-
quires to step through the tree two or even three times. If time is of the essence,
some Greeks can also be approximated directly from the original tree. (These
direct approximations are again finite differences.)

5.1 Greeks from the tree

5.1.1 Delta ∆

The ∆ is the change in v for a given small change in S. An estimate of ∆ can
be read directly from tree:

∆0,0 =
C1,1 − C1,0

S1,1 − S1,0

(6)

where we have used a subscript to ∆ to indicate the node for which it is
computed (here the root node, that is now).

The following figure shows the nodes required to compute the value.

S1,1

S1,0

0 1 2 3 4 i

0

1

2

3

4

j

C1,1

C1,0

0 1 2 3 4 i

0

1

2

3

4

j

12

For an arbitrary node (i, j), we have

∆i,j =
Ci+1,j+1 − Ci+1,j

Si+1,j+1 − Si+1,j

. (7)

5.1.2 Gamma Γ

The Γ is the change in the ∆ given a small change in the spot price S. Thus,
the current Γ may be approximated as

Γ0,0 =
∆1,1 − ∆1,0

S1,1 − S1,0

or Γ0,0 =
∆1,1 − ∆1,0

1
2
(S2,2 − S2,0)

(8)

where the second possibility uses the midpoint of the prices after two upticks
and two downticks, respectively.

The ∆-values, following Equation (7), are

∆1,1 =
C2,2 − C2,1

S2,2 − S2,1

and ∆1,0 =
C2,1 − C2,0

S2,1 − S2,0

.

Hence we obtain

Γ0,0 =

C2,2 − C2,1

S2,2 − S2,1

− C2,1 − C2,0

S2,1 − S2,0
1
2
(S2,2 − S2,0)

, (9)

where we have used the second approach from Equation (8) to approximate
a small change in S. The figure below shows the nodes that are required to
compute the Γ.

S2,2

S2,1

S2,0

0 1 2 3 4 i

0

1

2

3

4

j

C2,2

C2,1

C2,0

0 1 2 3 4 i

0

1

2

3

4

j

5.1.3 Theta Θ

The Θ, or ‘bleed’, is the change in the price of the option for a small change
in τ . Since τ naturally decreases, the sign is usually switched for the analytical
derivative. (So for a long position in an option, the Θ is negative.) This sign-
change is not necessary for a finite difference method if we let h be a small
negative quantity.

13

If the tree fulfils the condition ud = 1 (as is the case for Cox et al. (1979)), the
spot price will arrive at its initial value at time step 2. Thus, a simple method
to approximate Θ is

Θ =
C2,1 − C0,0

2 △t

. (10)

The following figure indicates the required nodes.

0 1 2 3 4 i

0

1

2

3

4

j

C0,0

C2,1

0 1 2 3 4 i

0

1

2

3

4

j

If the ‘centring on the spot’ condition (ie, ud = 1) is not fulfilled, then Θ may
either be approximated by one of the finite difference schemes in Equations (5)
or, as suggested by Rubinstein (1994), by

Θ = rC0,0 − rS0,0∆0,0 −
1

2
σ2S2

0,0Γ (11)

which uses the Black–Scholes–Merton differential equation. The ∆ and Γ can
be taken from the tree as described above, hence one loop through the tree
suffices to obtain Θ.

Some remarks: When computing the Greeks, the spot price must be updated
in the tree. If there is a discrete dividend, it must be added back to the spot
(as in the case of early exercise).

A Matlab programme (we chose a European call to make comparison with the
analytical Greeks easier):

1 function [C0 ,deltaE ,gammaE ,thetaE] = EuropeanCallGreeks (S0 ,X,r,tau ,sigma ,M)

2 % version: 14 Feb 2009

3 % compute constants

4 f7 = 1; dt = tau / M; v = exp(-r * dt);

5 u = exp(sigma*sqrt(dt)); d = 1 /u;

6 p = (exp(r * dt) - d) / (u - d);

7

8 % initialise asset prices at maturity (period M)

9 S = zeros(M + 1,1);

10 S(f7+0) = S0 * d^M;

11 for j = 1:M

12 S(f7+j) = S(f7+j - 1) * u / d;

13 end

14

15 % initialise option values at maturity (period M)

16 C = max(S - X, 0);

17

18 % step back through the tree

19 for i = M-1: -1:0

20 for j = 0:i

14

21 C(f7+j) = v * (p * C(f7+j + 1) + (1-p) * C(f7+j));

22 S(f7+j) = S(f7+j) / d;

23 end

24 if i==2

25 %gamma

26 gammaE = ((C(2+f7) - C(1+f7)) / (S(2+f7) - S(1+f7)) - ...

27 (C(1+f7) - C(0+f7)) / (S(1+f7) - S(0+f7))) / ...

28 (0.5 * (S(2+f7) - S(0+f7)));

29 %theta (aux)

30 thetaE = C(1+f7);

31 end

32 if i==1

33 %delta

34 deltaE = (C(1+f7) - C(0+f7)) / (S(1+f7) - S(0+f7));

35 end

36 if i==0

37 %theta (final)

38 thetaE = (thetaE - C(0+f7)) / (2 * dt);

39 end

40 end

41 C0 = C(f7+0);

6 Conclusion

In this paper we briefly described the implementation of standard binomial
trees for European and American options. All Matlab and R programmes can
be downloaded from http://comisef.eu.

15

A Analytical Black–Scholes–Merton

A.1 Prices

C = Se−qτ Φ(d1) − Xe−rτ Φ(d2) (A.1a)

P = −Se−qτ Φ(−d1) + Xe−rτ Φ(−d2) (A.1b)

with

d1 =
1

σ
√

τ

(

ln

(

S

X

)

+

(

r − q +
σ2

2

)

τ

)

(A.2a)

d2 =
1

σ
√

τ

(

ln

(

S

X

)

+

(

r − q − σ2

2

)

τ

)

= d1 − σ
√

τ (A.2b)

Here, Φ is the Gaussian distribution function, φ is the Gaussian density. (In
the financial engineering literature, one often finds the symbols N(·) and n(·),
respectively).

A.2 Greeks

A.2.1 Delta ∆

∆C = e−qτ Φ(d1) (A.3a)

∆P = e−qτ

(

Φ(d1) − 1

)

(A.3b)

A.2.2 Gamma Γ

ΓC,P =
e−qτ φ(d1)

Sσ
√

τ
(A.4)

A.2.3 adjusted Gamma Γa

Γa
C,P =

S

100
Γ (A.5)

16

A.2.4 Theta Θ

ΘC = −Se−qτφ(d1)σ

2
√

τ
+ qSe−qτΦ(d1) − rXe−rτΦ(d2) (A.6a)

ΘP = −Se−qτφ(d1)σ

2
√

τ
− qSe−qτΦ(−d1) + rXe−rτΦ(−d2) (A.6b)

A.2.5 Vega V

VC,P = Se−qτ φ(d1)
√

τ (A.7)

A.2.6 Rho R

RC = τXe−rτΦ(d2) (A.8a)

RP = −τXe−rτΦ(−d2) (A.8b)

17

References

Cox, John C., Stephen A. Ross and Mark Rubinstein (1979). Option Pricing:
A Simplified Approach. Journal of Financial Economics 7(3), 229–263.

Higham, Desmond J. (2002). Nine Ways to Implement the Binomial Method
for Option Valuation in MATLAB. SIAM Review 44(4), 661–677.

Jabbour, George M., Marat V. Kramin and Stephen D. Young (2001). Two-
State Option Pricing: Binomial Models Revisited. The Journal of Futures

Markets 21(11), 987–1001.
R Development Core Team (2008). R: A Language and Environment for Statis-

tical Computing. R Foundation for Statistical Computing. Vienna, Austria.
ISBN 3-900051-07-0.

Rubinstein, Mark (1994). Implied Binomial Trees. The Journal of Finance

49(3), 771–818.
Staunton, Mike (2003). From Floating Points to Binomial Trees. Wilmott

1, 44–47.

18

	cover_page
	trees

