
Computational Optimization Methods in Statistics, Econometrics and Finance

www.comisef.eu

COMISEF	WORKING	PAPERS	SERIES

WPS-044		18/09/2010

A	note	on	‘good	starting	

values’	in	numerical	

optimisation

M.	Gilli

E.	Schumann

- Marie Curie Research and Training Network funded by the EU Commission through MRTN-CT-2006-034270 -

A note on ‘good starting values’ in numerical

optimisation

Manfred Gilli and Enrico Schumann∗

3 June 2010

Abstract

Many optimisation problems in finance and economics have multiple local op-

tima or discontinuities in their objective functions. In such cases it is stressed

that ‘good starting points are important’. We look into a particular example:

calibrating a yield curve model. We find that while ‘good starting values’ sug-

gested in the literature produce parameters that are indeed ‘good’, a simple

best-of-n–restarts strategy with random starting points gives results that are

never worse, but better in many cases.

Many optimisation problems in finance and economics are difficult to solve. These

models have multiple local optima or discontinuities in their objective functions.

In such cases it is often stressed that ‘good starting points are important’. This

statement in itself is both trivial and useless: trivial if it is to imply that there exist

good starting values (just pick the global minimum as the starting value); useless

if no further advice is given how to find such good starting values.

Starting values can often be derived from economic or mathematical intuition

about the problem. But the subtleties of numerical representation and the iterative

nature of optimisation algorithms make it unpredictable whether a ‘good starting

point’ really leads to the global optimum or not (see Nash, 1990, pp. 146–147; Mc-

Cullough and Vinod, 1999; McCullough and Renfro, 2000; McCullough and Vinod,

2003 and the various responses; McKinnon, 1998). Even a run from a starting point

close to the global optimum is practically not guaranteed to converge.

But fortunately, we do not need to know good starting points. We can simply

restart the algorithm from different starting values, and then keep the best re-

sult. In this note, we demonstrate such an experiment, calibrating a yield structure

model. We show that while ‘good starting values’ suggested in the literature pro-

duce parameters that are indeed ‘good’, a simple best-of-n–restarts strategy with

random starting points gives results that are never worse, but better in many cases.

∗University of Geneva, Switzerland. Corresponding author: es AT vipag.com. We gratefully
acknowledge financial support from the eu Commission through mrtn-ct-2006-034270 comisef.

1

An experiment

The Nelson–Siegel–Svensson model is widely used by central banks and other

market participants as a model of the term structure of interest rates. Let y(τ) be

the zero rate for maturity τ, then the model defines such a rate as

y(τ) = β1 + β2

[

1 − exp(−τ/λ1)
τ/λ1

]

+ (1)

β3

[

1 − exp(−τ/λ1)
τ/λ1

− exp(−τ/λ1)

]

+ β4

[

1 − exp(−τ/λ2)
τ/λ2

− exp(−τ/λ2)

]

.

We will not discuss the details of the model here; see Nelson and Siegel (1987),

Svensson (1994), or Gilli et al. (2010). We need to estimate six parameters: β1, β2,

β3, β4, λ1 and λ2. Estimates can be obtained by minimising the difference between

the model rates y, and observed rates yM where the superscript stands for ‘market’

(such yM can for instance be computed by bootstrapping). We use the data from

Diebold and Li (2006), obtained from http://www.ssc.upenn.edu/~fdiebold/papers/

paper49/FBFITTED.txt. The data set consists of monthly zero rates for U.S. bonds

for 18 different maturities: 1/12, 3/12, 6/12, 9/12, 1, 11/4, 11/2, 1 3/4, 2, 21/2, 3, . . . , 10 years,

so we have yM(1/12), yM(3/12), and so on; see Diebold and Li (2006) for a detailed

description. Altogether, there are 372 cross-sections of yields, from January 1970

to December 2000.

An optimisation problem can then be stated as

min
β, λ

∑
(

y − yM
)2

. (2)

We constrain the parameters to the ranges

0 ≤ β1 ≤ 15, −15 ≤ β2 ≤ 30, −30 ≤ β3 ≤ 30, −30 ≤ β4 ≤ 30,

0 ≤ λ1 ≤ 3, 3 ≤ λ2 ≤ 6 ,

see Gilli et al. (2010) for a discussion.

This optimisation problem typically has many local minima, so classical tech-

niques based on derivatives of the objective function are not appropriate. But

still, researchers and operators use such techniques. There exist various prescrip-

tions for how to choose the starting value of an optimisation, see Gimeno and

Nave (2009) or Manousopoulos and Michalopoulos (2009). Here, as described in

Manousopoulos and Michalopoulos (2009, p. 598), we use starting points as fol-

2

lows:

β1 = (yM(9) + yM(10))/2

β2 = yM(1/12)− β1

β3 = 0

β4 = 0

λ1 = 1

λ2 = 1

We tested other variants, but the results were essentially unchanged; R-code to

replicate the experiment is given in the appendix.

To demonstrate our point, we use the function nlminb from R’s stats package

(R Development Core Team, 2008) and fit model (2): so for each month, we have

18 observed zero rates, and we wish to obtain parameters such that Equation (1)

closely approximates these rates. We try two optimisation strategies: firstly, we

run an optimisation with ‘good starting values’ (the gsv strategy). We also run

100 optimisations with starting values that are randomly chosen from the feasible

ranges, and then pick the best of these solutions; we call this the best-of-n (bon),

strategy, here best-of-100. This may not seem a fair comparison: the computing

time for bon will on average be 100 times greater than for gsv. Yet fast compu-

tation is never a goal in itself; it is a practical constraint. In other words, allowed

computing time determines n. And here, 100 runs are not too expensive: they take

less than 5 seconds in R 2.10.1 on an Intel p8700 (single core) at 2.53 GHz with

2 GB ram.

For each month, we so obtain a solution for gsv, and a solution for bon. Then,

we compute the root mean squared error (rms) of every solution as

√

√

√

√

1

m

m

∑
i=1

(

yM(τi)− y(τi)

)2

. (3)

This equation is equivalent to our objective function, but it rescales the objective

function to make the numerical results interpretable. In our data set, m is 18; we

give all results in basis points (bp). Next, we compute the difference between the

rms of the best solution of the 100 runs with random starting points, and the rms

obtained with ‘good starting values’, ie,

rmsbon − rmsgsv .

These differences are plotted in Figure 1; each dot shows the error difference for

one month. If this difference is positive, the gsv run gave a better result than

the bon run; if the difference is negative, the bon run was better. The maximum

3

−25 −20 −15 −10 −5 0

error difference in basis points

2000

1995

1990

1985

1980

1975

1970

Figure 1: Error difference in basis points between best-of-100–restarts (bon) solu-
tions and ‘good starting value’ (gsv) solutions. A negative difference means the
best-of-100 strategy worked better; a positive difference (there is none) means the
gsv strategy worked better.

difference is 0.0 bp, thus the bon solutions were never worse than the gsv solutions.

The minimum difference is 25.1 bp, so here the bon run yielded a solution with

an error that was substantially smaller. Altogether, the improvements seem small

in most cases, and we certainly need to judge their relevance from the view of a

concrete application; but for instance the bid–ask spread for liquid government

bonds like those of Germany is, in terms of yield, often only a fraction of one basis

point.

Conclusion

In our example, ‘good starting values’ have lead to good solutions indeed, but the

best-of-100–restarts strategy with random starting points gave results that were

never worse, but better in many cases.

4

The important point is that trying different starting points does not cost us

much. True, we need more computing time. Yet the fast solution from a single

restart can only be obtained by trading off solution quality against speed. We need

to judge with respect to our specific application how much computing time we can

afford.

In any case, rerunning an optimisation with different starting values is a ro-

bustness check that should always be applied to optimisation routines. If different

starting values lead to different solutions, then a multiple-restart strategy should

always be preferred (we can always include the ‘good starting point’ in our set of

starting values). Or better yet, we take it as a sign that alternative methods like

heuristics (Gilli and Winker, 2009) are more appropriate, anyway.

References

Francis X. Diebold and Canlin Li. Forecasting the Term Structure of Government

Bond Yields. Journal of Econometrics, 130(2):337–364, 2006.

Manfred Gilli and Peter Winker. Heuristic optimization methods in econometrics.

In David A. Belsley and Erricos Kontoghiorghes, editors, Handbook of Computa-

tional Econometrics. Wiley, 2009.

Manfred Gilli, Stefan Große, and Enrico Schumann. Calibrating the Nelson–Siegel–

Svensson Model. COMISEF Working Paper Series No. 31, 2010. available from

http://comisef.eu/?q=working_papers.

Ricardo Gimeno and Juan M. Nave. A Genetic Algorithm Estimation of the Term

Structure of Interest Rates. Computational Statistics & Data Analysis, 53:2236–2250,

2009.

Polychronis Manousopoulos and Michalis Michalopoulos. Comparison of Non-

linear Optimization Algorithms for Yield Curve Estimation. European Journal of

Operational Research, 192:594–602, 2009.

B.D. McCullough and Charles G. Renfro. Some Numerical Aspects of Nonlinear

Estimation. Journal of Economic and Social Measurement, 26(1):63–77, 2000.

B.D. McCullough and H.D. Vinod. The Numerical Reliability of Econometric Soft-

ware. Journal of Economic Literature, 37(2):633–665, June 1999.

B.D. McCullough and H.D. Vinod. Verifying the Solution from a Nonlinear Solver:

A Case Study. American Economic Review, 93(3):873–892, 2003.

K.I.M. McKinnon. Convergence of the Nelder–Mead Simplex Method to a Nonsta-

tionary Point. SIAM Journal on Optimization, 9(1):148–158, 1998.

5

John C. Nash. Compact Numerical Methods for Computers: Linear Algebra and Function

Minimization. Adam Hilger, 2nd edition, 1990.

Charles R. Nelson and Andrew F. Siegel. Parsimonious Modeling of Yield Curves.

Journal of Business, 60(4):473–489, 1987.

R Development Core Team. R: A Language and Environment for Statistical Computing.

R Foundation for Statistical Computing, Vienna, Austria, 2008. URL http://

www.R-project.org. ISBN 3-900051-07-0.

Lars E.O. Svensson. Estimating and Interpreting Forward Interest Rates: Sweden

1992–1994. IMF Working Paper 94/114, 1994.

A R code

The complete experiment, including the download of the data set from Diebold

and Li (2006), can be replicated with the following code.

1 # define Nelson --Siegel --Svensson model

2 NSS <- function(betaV ,mats) {

3 # betaV = beta1 -4, lambda1 -2

4 gam1 <- mats / betaV [5]

5 gam2 <- mats / betaV [6]

6 aux1 <- 1 - exp(-gam1)

7 aux2 <- 1 - exp(-gam2)

8 y <- betaV [1] + betaV [2] * (aux1 / gam1) +

9 betaV [3] * (aux1 / gam1 + aux1 - 1) +

10 betaV [4] * (aux2 / gam2 + aux2 - 1)

11 return(y)

12 }

13

14 # define objective function

15 OF <- function(betaV ,dataList) {

16 mats <- dataList$mats

17 yM <- dataList$yM

18 model <- dataList$model

19 y <- model(betaV ,mats)

20 aux <- y - yM

21 aux <- crossprod(aux)

22 return(aux)

23 }

24

25 # get bliss/diebold/li data

26 x <- url("http://www.ssc.upenn.edu/~fdiebold/papers/paper49/FBFITTED.txt")

27 open(x); dili <- scan(x, skip = 14); close(x)

28 mat <- NULL

29 for (i in 1:372) {mat <- rbind(mat ,dili [(19*(i-1) +1) :(19*(i-1) +19)])}

30 mats <- c(1,3,6,9,12,15,18,21,24,30,36,48,60,72,84,96,108,120) /12

31

32 # the obligatory perspective plot

33 persp(x = mat[,1], y = mats ,mat[,-1],

34 phi = 40, theta = 20, ticktype = "detailed",

35 xlab = "time", ylab = "time to maturity in years",

6

36 zlab = "zero rates in %")

37

38 # settings: minimum , maximum , number of parameters

39 settings <- list(

40 min = c(0,-15,-30,-30,0,3),

41 max = c(15, 30, 30, 30,3,6),

42 d = 6)

43

44 # how many restarts per month?

45 trials <- 100

46

47 # set array to store results

48 res <- array(NA , c(372, trials));goodRes <- array(NA , c(372 ,1))

49

50 # run through all months

51 set.seed (75325428)

52 howFar <- txtProgressBar(min=1,max=372, style =3)

53 for(t in 1:372){

54 # market yields

55 yM <- as.numeric(mat[t,-1])

56 dataList <- list(yM = yM , mats = mats , model = NSS)

57 # random starting values

58 for(rr in seq(trials)) {

59 s0 <- settings$min +

60 (settings$max - settings$min) * runif(settings$d)

61 sol <- nlminb(s0 , OF ,

62 data = dataList ,

63 lower = settings$min , upper = settings$max)

64 res[t,rr] <- sqrt(sum((NSS(sol$par ,mats)-yM)^2)/18)

65 }

66 # good starting values

67 s0 <- c((yM[18]+ yM[17])/2,yM[1]-(yM [18]+ yM [17])/2,0,0,1,1)

68 sol <- nlminb(s0 ,OF ,

69 data = dataList ,

70 lower = settings$min , upper = settings$max ,

71 control = list(eval.max =50000 , iter.max =50000))

72 goodRes[t] <- sqrt(sum((NSS(sol$par ,mats)-yM)^2)/18)

73 #

74 setTxtProgressBar(howFar , value=t)

75 }

76 close(howFar)

77 # compute difference in basis points between random -start solutions and good -

start solutions

78 diffs <- 100 * (apply(res ,1,min) - goodRes)

79 labs <- rep(NA ,372); labs[seq(from=1, to= 372, by = 60)] <- seq (1970 ,2000 ,5)

80 diffs <- diffs [372:1]; labs <- labs [372:1] # flip upside down for plotting

81

82 # plot

83 #setEPS ()

84 # postscript (" errors.eps",family =" Palatino",width =4, height =5)

85 par(bty="n",las=1,ps=10,mar=c(4,4,1,1))

86 plot(diffs ,1:372 , type="n",xlab="error difference in basis points",yaxt="n",

ylab="")

87 points(diffs ,1:372 , cex=.25,pch =19)

88 axis(2,at=1:372 , labels=labs ,lty =0)

89 #dev.off ()

7

