
Portfolio Management with R

Enrico Schumann

12 August 2017

Contents

1 Introduction 5
1.1 About PMwR . 5
1.2 Principles . 6

1.2.1 Small . 6
1.2.2 Flexible and general . 6
1.2.3 Functional . 6
1.2.4 Matching by name . 6
1.2.5 Vectorisation . 7

1.3 Other packages . 7
1.3.1 datetimeutils . 7
1.3.2 textutils . 7
1.3.3 tsdb . 7

2 Keeping track of transactions: journals 9
2.1 Creating and combining journals . 10
2.2 Selecting transactions . 14
2.3 Computing balances . 16
2.4 Aggregating journal information . 18

3 Computing profit and loss 21
3.1 Simple cases . 21

3.1.1 Total P/L . 21
3.1.2 P/L over time . 28

3.2 More-complicated cases . 29

4 Computing returns 31
4.1 Simple returns . 31
4.2 Holding-period returns . 33
4.3 Returns when weights are fixed . 37
4.4 Return contribution . 38
4.5 Returns when there are external cashflows . 39

5 Backtesting 41
5.1 Decisions . 41
5.2 Data structure . 42
5.3 Function arguments . 43

5.3.1 Available information within functions . 43
5.3.2 Function arguments . 44

3

Contents

5.4 Examples: A single asset . 45
5.4.1 A useless first example . 45
5.4.2 More-useful examples . 48

5.5 Examples: Several assets . 56
5.5.1 A simple example . 57

5.6 Common tasks . 58
5.6.1 Remembering an entry price . 58
5.6.2 Delaying signals . 58
5.6.3 Specifying when to compute a signal and trade 58
5.6.4 Writing a log . 59
5.6.5 Selecting parameters: calling btest recursively 59

6 Rebalancing a portfolio 63
6.1 Usage with unnamed vectors . 63
6.2 Usage with named vectors . 64
6.3 Optimisation . 65
6.4 Substituting a basket by its components . 67

7 Analysing portfolio time-series 69

8 Plotting irregularly-spaced series during trading hours 71
8.1 An example . 71
8.2 More examples . 74

8.2.1 Value of plot_trading_hours . 74
8.2.2 Adding grid lines . 74

9 Valuation 79
9.1 Prices . 79

10 Analysing trades 81
10.1 Exposure . 81
10.2 Splitting and rescaling . 82

11 Scaling series 85
11.1 Examples . 85
11.2 Scaling a series . 89

12 Other Tools 91
12.1 Dividend adjustments . 91
12.2 Stocks splits . 91
12.3 Treasuries quotes . 91
12.4 Validating ISINs . 92

13 FAQ/ FRC
(Frequently-required computations) 93

14 Appendix: R and package versions used 95

4

1 Introduction

1.1 About PMwR

This manual describes how to use the pmwr package. The aim of pmwr is to provide a small set
of reliable, efficient and convenient tools that help in processing and analysing trade and portfolio
data. The package does not provide a complete application that could be used ‘as is’; rather, the
package provides building blocks for creating such an application.

pmwr grew out of various pieces of software that I have written since 2008, first at the University
of Geneva, later during my work at financial firms.

The package is currently under development and changes frequently. This is mainly because the
code has been written over many years and is in need of being groomed for general use.

Consequently, this manual is only a draft, and it will change as frequently as the package.1 I am
grateful for comments and suggestions.

The latest version of the package is available from http://enricoschumann.net/R/packages/PMwR/

index.htm. To install the package from within R, type

install.packages("PMwR",

type = "source",

repos = c('http://enricoschumann.net/R',

getOption('repos ')))

to download and install it. The package depends on several other packages, which are automati-
cally obtained from the same repository and from CRAN.The source code is also pushed to a public
repository at https://github.com/enricoschumann/PMwR.

There is currently no automatic build process for Windows. Recent versions of the package (since
0.3-4) are pure R code and can be built without any prerequisites except an R installation; older
version contained C code, so you needed to have Rtools installed. If you have problems building
the package for Windows, please contact me and I will provide you with a Windows version.

1The manual itself is written in Org mode. The complete tangled code is available from the website.

5

http://enricoschumann.net/R/packages/PMwR/index.htm
http://enricoschumann.net/R/packages/PMwR/index.htm
https://github.com/enricoschumann/PMwR
https://cran.r-project.org/bin/windows/Rtools/
http://orgmode.org/

1 Introduction

1.2 Principles

1.2.1 Small

The aim of pmwr is to provide a small set of tools. This comes at the price: interfaces may be more
complicated. But with few functions, it is easier to remember a function name or to find it in the
first place.

1.2.2 Flexible and general

pmwr aims to be open to different types of instruments, different timestamps, etc.

1.2.3 Functional

With properly designed functions, it is possible to ignore how a job is done; knowing
what is done is sufficient.

(K&R, chapter 1)

There are many good reasons for using functions.

• clearer code; easier to reuse; easier to maintain

• provide a clear view of what is needed for a specific computation; thus, they help with
parallel/distributed computing

• easier to test functionality

• input data is not changed

• clean workspace after function call has ended

(There are more advantages, actually; such as the application of techniques such as memoisation.)

Computations provided by pmwr should not rely on global options/settings. The exception are
functions that are used interactively, which essentially means print methods. (In scripts or meth-
ods, you should prefer cat.)

1.2.4 Matching by name

Whenever possible and intuitive, data should be matched by name, not by position. This is most
natural with vectors that store scalar information about instruments, such as prices or multipliers.
In such cases, data input such as prices) is preferred in the form of named vectors.

6

1.3 Other packages

1.2.5 Vectorisation

Functions should do vectorisation when it is beneficial in terms of speed or clarity of code. Like-
wise, functions should work on matrices directly (typically columnwise) when it simplifies or
speeds up things. Otherwise, applying the function (i.e. looping) should be left to the user.

An example may clarify this: drawdown is internally computed through cumsum, so it will be fast for
a single vector. But for a matrix of time series, it would need a loop, which will be left to the user.

1.3 Other packages

Several other packages originated from pmwr; initially, much of their code had been part of pmwr.

1.3.1 datetimeutils

Tools for handling Date and POSIXct objects

https://github.com/enricoschumann/datetimeutils

http://enricoschumann.net/R/packages/datetimeutils/

1.3.2 textutils

string handling for reporting (plain text, HTML, LATEX)

https://github.com/enricoschumann/textutils

http://enricoschumann.net/R/packages/textutils

1.3.3 tsdb

Terribly-simple database for time series

7

https://github.com/enricoschumann/datetimeutils
http://enricoschumann.net/R/packages/datetimeutils/
https://github.com/enricoschumann/textutils
http://enricoschumann.net/R/packages/textutils

2 Keeping track of transactions: journals

The ultimate basis of many financial computations are lists of transactions. And so many of the
tools that the pmwr package provides take lists of transactions as input.

Conceptually, you can think of such lists as dataframes, but pmwr provides an S3 class journal for
handling them.

A journal is a list of atomic vectors, to which a class attribute is attached. Such a list is created
through the function journal. Methods should not rely on this list being sorted in any particular
way: components of a journal should always be retrieved by name, never by position. (In this
respect a journal differs from a dataframe, for whichwe canmeaningfully refer to the n-th column.)
I will call these journal components, such as amount or timestamp, fields.

The simplicity of the class is intended, because it is meant for interactive analyses. The user may –
and is expected to – dissect the information in a journal at will; such dissections include removing
the class attribute.

What is actually stored in a journal is up to the user. A number of fields are, however, required
for certain operations and so it is recommended that they be present:

amount The notional amount that is transacted. amount is, in a way, the most important property of
a journal. When functions compute something from the journal (the number of transactions,
say), they will look at amount.

timestamp When did the transaction take place? A numeric or character vector; should be sortable.

price Well, price.

instrument Description of the financial instrument; typically an identifier, a.k.a. ticker or symbol.
That is, a string, not really a more complex object (recall that journals are lists of atomic
vectors).

id A (possibly but not necessarily unique) transaction identifier.

account Description of the account.

... other fields. They must be named, as in fees = c(1,2,1)

All fields except amount can be missing. Such missing values will be ‘added back’ as NA with the
exception of id and account, which will be NULL. (Note that amount could be a vector with only NA

values in it, but amount cannot be left out when the journal is created. This will become clearer with
the examples below.) Note that when a journal has no transactions in it (which may be the case),

9

2 Keeping track of transactions: journals

this does not mean it has missing values. In such a case, all fields have length zero, e.g. amount

would be numeric(0) and so on. Such empty journals may be created by saying journal() or by
coercing a zero-row data.frame to a journal, via a call to as.journal.

Transactions in a journal can conceptually be organised in hierarchies, such as account => in-
strument. (You may have traded stock XY for several different accounts, or as part of different
strategies.) A simple scheme is to use specific characters or a pattern such as :: to introduce
hierarchies into accounts,1 such as pension::equities.

2.1 Creating and combining journals

The function journal creates journal objects. For details about the function and methods for jour-
nal objects, see ?journal.

At its very minimum, a journal must contain amounts of something.

jnl <- journal(amount = c(1, 2, -2, 3))

jnl

amount

1 1

2 2

3 -2

4 3

4 transactions

Actually, that is not true. On occasion it is useful to create an empty journal, one with no entries
at all. You can do this by saying journal(), without any arguments.

journal ()

no transactions

To see the current balance, which is nothing more than the sum over all amounts, you can use
position.

position(jnl)

[,1]

[1,] 4

1This notation is inspired by the syntax of ledger files. See http://www.ledger-cli.org/ .

10

http://www.ledger-cli.org/

2.1 Creating and combining journals

Only providing amounts is, admittedly, not overly useful. You can keep track of positions, true; but
a journal implies chronological information, that is, flows. (As opposed to a ledger, which gives
you positions, or stocks.)

When you make sure that the amounts are actually sorted in time, then you can at least track
positions over time. (But nothing in the data structure that we created above could make sure that
transactions really are sorted.)

Suppose you wanted to note howmany bottles of milk and wine you have stored in your basement.
Whenever you add to your storage, you have a positive amount; whenever you retrieve bottles,
you have a negative amount. Then, by keeping track of transactions, you may not have to take
stock (apart, perhaps, from occasional checking that you did not miss a transaction), as long as
you keep track of what you put into your cellar and what you take out.

There may be some analyses you can do on flows alone (without any information): perhaps check-
ing your drinking habits for patterns, such as slow accumulation of wine, followed by rapid con-
sumption; or the other way around.

But typically, the more information you store about transactions (when, what, at what price, etc.),
the better. Journals allow you to store such information. To show how they are used, let us switch
to a financial example.

J <- journal(timestamp = as.Date("2012 -01 -01") + 0:3,

amount = c(1, 2, -2, 5),

instrument = c("EUR", "EUR", "CHF", "CHF"),

comment = c("initial balance", "",

"transfer", ""))

J

instrument timestamp amount comment

1 EUR 2012 -01 -01 1 initial balance

2 EUR 2012 -01 -02 2

3 CHF 2012 -01 -03 -2 transfer

4 CHF 2012 -01 -04 5

4 transactions

A print method defines how a journal is displayed. See ?print.journal for details. (In general,
you can always get help for methods for generic functions by saying ?function_name.journal, e.g.
?print.journal or ?as.data.frame.journal.)

print(J, max.print = 2, exclude = "instrument")

timestamp amount comment

1 2012 -01 -01 1 initial balance

2 2012 -01 -02 2

[....]

11

https://en.wikipedia.org/wiki/General_journal
https://en.wikipedia.org/wiki/Ledger

2 Keeping track of transactions: journals

4 transactions

A str method shows the fields in the journal.

str(J)

'journal ': 4 transactions

$ instrument: chr [1:4] "EUR" "EUR" "CHF" "CHF"

$ timestamp : Date [1:4], format: "2012 -01 -01" ...

$ amount : num [1:4] 1 2 -2 5

$ price : logi [1:4] NA NA NA NA

$ comment : chr [1:4] "initial balance" "" "transfer" ""

You may notice that the output is similar to that of a data.frame or list. That is because J is a
list internally, with a class attribute. Essentially, it is little more than that:

list(timestamp = as.Date("2012 -01 -01") + 0:3,

amount = c(1, 2, -2, 5),

instrument = c("EUR", "EUR", "CHF", "CHF"),

comment = c("initial balance", "", "transfer", ""))

(But note that journal silently added a price field, even though we did not specify one.)

In the example, the timestamps are of class Date. But essentially, any vector of mode character
or numeric can be used, for instance POSIXct, or other classes. Here is an example that uses the
nanotime package (Eddelbuettel, 2017).

require("nanotime")

journal(amount = 1:3,

timestamp = nanotime(Sys.time ()) + 1:3)

timestamp amount

1 1501705632950756001 1

2 1501705632950756002 2

3 1501705632950756003 3

3 transactions

Journals can be combined with c.

J2 <- J

J2$fees <- rep (0.1 ,4)

c(J, J2)

12

2.1 Creating and combining journals

instrument timestamp amount comment fees

1 EUR 2012 -01 -01 1 initial balance NA

2 EUR 2012 -01 -02 2 NA

3 CHF 2012 -01 -03 -2 transfer NA

4 CHF 2012 -01 -04 5 NA

5 EUR 2012 -01 -01 1 initial balance 0.1

6 EUR 2012 -01 -02 2 0.1

7 CHF 2012 -01 -03 -2 transfer 0.1

8 CHF 2012 -01 -04 5 0.1

8 transactions

But we wanted the combined journal sorted by date.

sort(c(J, J2))

instrument timestamp amount comment fees

1 EUR 2012 -01 -01 1 initial balance NA

2 EUR 2012 -01 -01 1 initial balance 0.1

3 EUR 2012 -01 -02 2 NA

4 EUR 2012 -01 -02 2 0.1

5 CHF 2012 -01 -03 -2 transfer NA

6 CHF 2012 -01 -03 -2 transfer 0.1

7 CHF 2012 -01 -04 5 NA

8 CHF 2012 -01 -04 5 0.1

8 transactions

We can also sort by some other field, such as amount.

sort(c(J, J2), by = "amount", decreasing = TRUE)

instrument timestamp amount comment fees

1 CHF 2012 -01 -04 5 NA

2 CHF 2012 -01 -04 5 0.1

3 EUR 2012 -01 -02 2 NA

4 EUR 2012 -01 -02 2 0.1

5 EUR 2012 -01 -01 1 initial balance NA

6 EUR 2012 -01 -01 1 initial balance 0.1

7 CHF 2012 -01 -03 -2 transfer NA

8 CHF 2012 -01 -03 -2 transfer 0.1

8 transactions

13

2 Keeping track of transactions: journals

2.2 Selecting transactions

In an interactive session, you can use subset to select particular transactions.

subset(J, amount > 1)

instrument timestamp amount comment

1 EUR 2012 -01 -02 2

2 CHF 2012 -01 -04 5

2 transactions

With subset, you need not quote the expression that selects trades and you can directly access a
journal’s fields. Because of the way subset evaluates its arguments, it should not be used within
functions. (See the Examples section in ?journal for what can happen then.)

More generally, to extract or change a field, use its name, either through the $ operator or double
brackets [[...]].2

J$amount

[1] 1 2 -2 5

You can also replace specific fields.

J[["amount"]] <- c(1 ,2, -2, 8)

J

instrument timestamp amount comment

1 EUR 2012 -01 -01 1 initial balance

2 EUR 2012 -01 -02 2

3 CHF 2012 -01 -03 -2 transfer

4 CHF 2012 -01 -04 8

4 transactions

The `[` method works with integers or logicals, returning the respective transactions.

J[2:3]

2The behaviour of ‘[[‘ may change in the future: it may then be used to iterate over the transactions in a journal,
not the fields. This would be motivated by https://developer.r-project.org/blosxom.cgi/R-devel/NEWS/2016/03/

09 even though the commit was reversed two days later https://developer.r-project.org/blosxom.cgi/R-devel/
NEWS/2016/03/11

14

https://developer.r-project.org/blosxom.cgi/R-devel/NEWS/2016/03/09
https://developer.r-project.org/blosxom.cgi/R-devel/NEWS/2016/03/09
https://developer.r-project.org/blosxom.cgi/R-devel/NEWS/2016/03/11
https://developer.r-project.org/blosxom.cgi/R-devel/NEWS/2016/03/11

2.2 Selecting transactions

instrument timestamp amount comment

1 EUR 2012 -01 -02 2

2 CHF 2012 -01 -03 -2 transfer

2 transactions

J[J$amount < 0]

instrument timestamp amount comment

1 CHF 2012 -01 -03 -2 transfer

1 transaction

You can also pass a string, which is then interpreted as a regular expression that is matched against
all character fields in the journal.

J["eur"]

instrument timestamp amount comment

1 EUR 2012 -01 -01 1 initial balance

2 EUR 2012 -01 -02 2

2 transactions

By default, case is ignored, but you can set ignore.case to FALSE.

J["Transfer"]

instrument timestamp amount comment

1 CHF 2012 -01 -03 -2 transfer

1 transaction

J["Transfer", ignore.case = FALSE]

no transactions

You can also specify the fields to match the string against.

J["Transfer", match.against = "instrument"]

no transactions

15

2 Keeping track of transactions: journals

2.3 Computing balances

The function position gives the current balance of all instruments.

position(J)

2012 -01 -04

CHF 6

EUR 3

To get the position at a specific date, use the when argument.

position(J, when = as.Date("2012 -01 -03"))

2012 -01 -03

CHF -2

EUR 3

If you do not like such a tabular view, consider splitting the journal.

lapply(split(J, J$instrument),

position , when = as.Date("2012 -01 -03"))

$CHF

2012 -01 -03

CHF -2

$EUR

2012 -01 -03

EUR 3

To get a time series of positions, you can use specific keywords for when: allwill print the position
at all timestamps in the journal.

position(J, when = "all")

CHF EUR

2012 -01 -01 0 1

2012 -01 -02 0 3

2012 -01 -03 -2 3

2012 -01 -04 3 3

Keywords first and last give you the first and last position. (The latter is the default; so if when
is not specified at all, the last position is computed.) endofmonth prints the positions at the ends of
all calendar months between the first and the last timestamp.

We are not limited to the timestamps that exist in the journal.

16

2.3 Computing balances

position(J, when = seq(from = as.Date("2011 -12 -30"),

to = as.Date("2012 -01 -06"),

by = "1 day"))

CHF EUR

2011 -12 -30 0 0

2011 -12 -31 0 0

2012 -01 -01 0 1

2012 -01 -02 0 3

2012 -01 -03 -2 3

2012 -01 -04 6 3

2012 -01 -05 6 3

2012 -01 -06 6 3

By default, position will show you all positions, even if they are zero.

J <- c(J, journal(instrument = "EUR",

amount = -3,

timestamp = as.Date("2012 -01 -05")))

position(J)

2012 -01 -05

CHF 6

EUR 0

You can suppress such positions with drop.zero.

position(J, drop.zero = TRUE)

2012 -01 -05

CHF 6

drop.zero can also be a tolerance, which is useful in cases such as this one:

J <- c(J, journal(instrument = "USD",

timestamp = as.Date("2012 -01 -05"),

amount = c(0.1, 0.1, 0.1, -0.3)))

position(J, drop.zero = TRUE)

2012 -01 -05

CHF 6.00e+00

USD 2.78e-17

position(J, drop.zero = 1e-15)

17

2 Keeping track of transactions: journals

2012 -01 -05

CHF 6

2.4 Aggregating journal information

Often the data provided by journals needs to be processed in some way. A straightforward strategy
is to call as.data.frame on the journal and then to use one of the many functions and methods
that can be used for dataframes, such as aggregate or apply.

A journal is a list of atomic vectors and hence already very similar to a dataframe. As a conse-
quence, many computations can also be done directly on the journal, in particular with tapply.

An example: you have a journal jnl and want to compute monthly turnover (two-way). If there is
only one instrument or all instruments may be added without harm, you can use this expression:

tapply(jnl ,

INDEX = format(jnl$timestamp , "%Y-%m"),

FUN = function(x) sum(abs(x$amount)))

To break it down by instrument, just add instrument as a second grouping variable to the INDEX

argument.

tapply(jnl ,

INDEX = list(format(jnl$timestamp , "%Y-%m"),

jnl$instrument),

FUN = function(x) sum(abs(x$amount)))

A special case is when a journal is to be processed into a new journal. For this, pmwr defines an
aggregate method for journals.

aggregate.journal splits the journal according to the grouping argument by, which can be a list

(as in the default method) or an atomic vector.

The argument FUN can either be a function or list. If it is function, it should expect to receive a
journal and also evaluate to a journal. (Note that this is different from R’s aggregate.data.frame,
which calls FUN on all columns, but in turn cannot address specific columns of the data.frame.)

If FUN is a list, its elements should be named functions. The names should match fields in the
journal.

An example: we have a journal covering two trading days, and wish to create a summary journal
which aggregates buys/sells for every day.

18

2.4 Aggregating journal information

jnl <- journal(timestamp = structure(c(15950 , 15951, 15950, 15951, 15950,

15950, 15951, 15951, 15951, 15951) ,

class = "Date"),

amount = c(-3, -4, -3, -1, 3, -2, 1, 3, 5, 3),

price = c(104, 102, 102, 110, 106, 104, 104, 106, 108, 107),

instrument = c("B", "B", "A", "A", "B", "B", "A", "B", "A", "A"))

fun <- function(x) {

journal(timestamp = as.Date(x$timestamp [1]),

amount = sum(x$amount),

price = sum(x$amount*x$price)/sum(x$amount),

instrument = x$instrument [1L])

}

aggregate(jnl ,

by = list(jnl$instrument ,

sign(jnl$amount),

as.Date(jnl$timestamp)),

FUN = fun)

instrument timestamp amount price

1 A 2013 -09 -02 -3 102.0000

2 B 2013 -09 -02 -5 104.0000

3 B 2013 -09 -02 3 106.0000

4 A 2013 -09 -03 -1 110.0000

5 B 2013 -09 -03 -4 102.0000

6 A 2013 -09 -03 9 107.2222

7 B 2013 -09 -03 3 106.0000

7 transactions

19

3 Computing profit and loss

In this chapter we will deal with computing profit and loss in amount of currency. If you are
interested in computing returns, see Section Computing returns.

3.1 Simple cases

3.1.1 Total P/L

We buy one unit of an asset at a price of 100 euro and we sell it for 101. We have made a profit of
1 euro.

This simple case is frequent enough that we should make the required computation simple as well.
The pmwr package provides a function pl, which for this case may be called as follows.

pl(price = c(100, 101),

amount = c(1, -1))

P/L total 1

average buy 100

average sell 101

cum. volume 2

'P/L total ' is in units of instrument;

'volume ' is sum of /absolute/ amounts.

Instead of a vectors price and amount, you could also have passed a journal to pl.

In principle, P/L is straightforward to compute. Let x be a vector of the absolute amounts traded,
and let p be a vector of the prices at which we traded. Then P/L is just the difference between what
we received when selling and what we paid when buying.∑

x sell
i psell

i −
∑

x
buy
i p

buy
i (3.1)

This can be simplified when we impose the convention that sold amounts are negative.

P/L = −
∑
x<0

xipi −
∑
x>0

xipi (3.2)

= −
∑

xipi (3.3)

21

3 Computing profit and loss

The function pl also expects this convention: in the code example we had x = [1,−1]′.

There are several ways to perform this basic (or fundamental, rather) computation. Here are some,
along with some timing results.

amount <- rep(c(-100,100), 100)

price <- rep(100, length(amount))

library("rbenchmark")

benchmark(

amount %*% price ,

sum(amount*price),

crossprod(amount , price),

t(amount*price) %*% rep(1, length(amount)),

columns = c("test", "elapsed", "relative"),

order = "relative",

replications = 20000)

pl uses the straightforward sum(amount * price) variant; only when very long vectors are used,
it switches to crossprod.

pl also accepts an argument instrument: if it is available, pl computes and reports P/L for each
instrument separately. As an example, suppose you traded shares of two German companies,
Adidas and Commerzbank. We collect the transactions in a journal.

jnl <- readOrg(text = "

| instrument | amount | price |

|-------------+--------+-------|

| Adidas | 50 | 100 |

| Adidas | -50 | 102 |

| Commerzbank | 500 | 8 |

| Commerzbank | -500 | 7 |

")

jnl <- as.journal(jnl)

jnl

instrument amount price

1 Adidas 50 100

2 Adidas -50 102

3 Commerzbank 500 8

4 Commerzbank -500 7

4 transactions

We can now pass the journal directly to pl.

pl(jnl)

22

3.1 Simple cases

Adidas

P/L total 100

average buy 100

average sell 102

cum. volume 100

Commerzbank

P/L total -500

average buy 8

average sell 7

cum. volume 1000

'P/L total ' is in units of instrument;

'volume ' is sum of /absolute/ amounts.

An aside: since the shares are denominated in the same currency (euro), total profit is the same
even if we had left out the instruments; however, average buying and selling price becomes less
informative.

Financial instruments do not only differ in the currencies in which they are denominated. Many
derivatives have multipliers, which you may also specify. Suppose you have traded FGBL (German
Bund futures) and FESX (EURO STOXX 50 futures).

jnl <- readOrg(text = "

| instrument | amount | price |

|-------------+--------+--------|

| FGBL MAR 16 | 1 | 165.20 |

| FGBL MAR 16 | -1 | 165.37 |

| FGBL JUN 16 | 1 | 164.12 |

| FGBL JUN 16 | -1 | 164.13 |

| FESX JUN 16 | 5 | 2910 |

| FESX JUN 16 | -5 | 2905 |

")

jnl <- as.journal(jnl)

jnl

instrument amount price

1 FGBL MAR 16 1 165.20

2 FGBL MAR 16 -1 165.37

3 FGBL JUN 16 1 164.12

4 FGBL JUN 16 -1 164.13

5 FESX JUN 16 5 2910.00

6 FESX JUN 16 -5 2905.00

6 transactions

23

3 Computing profit and loss

One point of the FGBL translates into 1000 euros; for the FESX it is 10 euros.

futures_pl <- pl(jnl ,

multiplier = c("^FGBL" = 1000, "^FESX" = 10),

multiplier.regexp = TRUE)

futures_pl

FESX JUN 16

P/L total -250

average buy 2910

average sell 2905

cum. volume 10

FGBL JUN 16

P/L total 10

average buy 164.12

average sell 164.13

cum. volume 2

FGBL MAR 16

P/L total 170

average buy 165.2

average sell 165.37

cum. volume 2

'P/L total ' is in units of instrument;

'volume ' is sum of /absolute/ amounts.

Note that we used a named vector to pass the multipliers. Per default, the names of this vector need
to exactly match the instruments’ names. Setting multiplier.regexp to TRUE causes the names of
the multiplier vector to be interpreted as (Perl-style) regular expressions.

At this point, it may be helpful to describe how we can access the results of such P/L computations
(other than having them printed to the console, that is). The function pl always returns a list of
lists – one list for each instrument.

str(futures_pl)

List of 3

$ FESX JUN 16: List of 6

..$ pl : num -250

..$ realised : logi NA

..$ unrealised: logi NA

..$ buy : num 2910

..$ sell : num 2905

..$ volume : num 10

$ FGBL JUN 16: List of 6

24

3.1 Simple cases

..$ pl : num 10

..$ realised : logi NA

..$ unrealised: logi NA

..$ buy : num 164

..$ sell : num 164

..$ volume : num 2

$ FGBL MAR 16: List of 6

..$ pl : num 170

..$ realised : logi NA

..$ unrealised: logi NA

..$ buy : num 165

..$ sell : num 165

..$ volume : num 2

- attr(*, "class")= chr "pl"

- attr(*, "along.timestamp")= logi FALSE

- attr(*, "instrument")= chr [1:3] "FESX JUN 16" "FGBL JUN 16" "FGBL MAR 16"

Each such list contains numeric vectors: ’pl’, ’realised’, ’unrealised’, ’buy’, ’sell’, ’volume’. There
may also be an additional vector, timestamp, to be described later in Section PL over time.

Data can be extracted by standardmethods. The vectors ’realised’ and ’unrealised’ will be NA unless
along.timestamp is TRUE, also described in Section PL over time.

unlist(futures_pl[["FESX JUN 16"]])

pl realised unrealised buy sell volume

-250 NA NA 2910 2905 10

unlist(lapply(futures_pl, `[[`, "volume"))

FESX JUN 16 FGBL JUN 16 FGBL MAR 16

10 2 2

You may prefer sapply(...) instead of unlist(lapply(...)). Also, extracting the raw P/L num-
bers of each instrument is common that you can say pl(pl(...)). So you could have written:

pl(pl(jnl ,

multiplier = c("FGBL" = 1000, "FESX" = 10),

multiplier.regexp = TRUE))

FESX JUN 16 FGBL JUN 16 FGBL MAR 16

-250 10 170

It is often more convenient to have the data presented as a table.

as.data.frame(futures_pl)

25

3 Computing profit and loss

pl buy sell volume

FESX JUN 16 -250 2910.00 2905.00 10

FGBL JUN 16 10 164.12 164.13 2

FGBL MAR 16 170 165.20 165.37 2

Or if you like ASCII tables, with toOrg.

toOrg(as.data.frame(futures_pl), row.names = "instrument")

| instrument | pl | buy | sell | volume |

|-------------+------+--------+--------+--------|

| FESX JUN 16 | -250 | 2910 | 2905 | 10 |

| FGBL JUN 16 | 10 | 164.12 | 164.13 | 2 |

| FGBL MAR 16 | 170 | 165.2 | 165.37 | 2 |

We can also use pl when there are open positions. The simplest example is a journal of just one
trade.

pl(amount = 1, price = 100)

P/L total NA

average buy 100

average sell NA

cum. volume 1

'P/L total ' is in units of instrument;

'volume ' is sum of /absolute/ amounts.

Warning message:

In pl.default(amount = 1, price = 100) :

'sum(amount)' is not zero: specify 'vprice ' to compute p/l

Of course, there be no P/L number. But the warning message that is thrown already tells us what
to do: we need to specify a price at which the open position is to be valued. This valuation price
is passed as argument vprice.

pl(amount = 1, price = 100, vprice = 105)

P/L total 5

average buy 100

average sell 105

cum. volume 1

'P/L total ' is in units of instrument;

'volume ' is sum of /absolute/ amounts.

26

3.1 Simple cases

Note that average sell takes into account the valuation price that we specified. But cum. volume

has remained 1 since only 1 unit was actually traded.

A common task is to compute P/L over a specified period of time such as one trading day. The
procedure for such a case requires three ingredients:

1. the initial position and its valuation prices,

2. the trades during the period,

3. the final position and its prices.

Suppose yesterday, at market close, we had the following positions.

open_position <- c(`FESX JUN 16` = -20, `FGBL JUN 16` = 10)

prices <- c(`FESX JUN 16` = 2912, `FGBL JUN 16` = 164.23)

Note that, as with the multipliers above, we use named vectors for both the position and the prices:
the names indicate the instruments.

Trading just ended, and we have done the following trades.

jnl

instrument amount price

1 FGBL MAR 16 1 165.20

2 FGBL MAR 16 -1 165.37

3 FGBL JUN 16 1 164.12

4 FGBL JUN 16 -1 164.13

5 FESX JUN 16 5 2910.00

6 FESX JUN 16 -5 2905.00

6 transactions

pl(jnl ,

initial.position = open_position ,

initial.price = prices ,

vprice = c(`FESX JUN 16` = 2902, `FGBL JUN 16` = 164.60) ,

multiplier = c("FGBL" = 1000, "FESX" = 10),

multiplier.regexp = TRUE)

FESX JUN 16

P/L total 1750

average buy 2903.6

average sell 2910.6

cum. volume 10

FGBL JUN 16

27

3 Computing profit and loss

P/L total 3710

average buy 164.22

average sell 164.56

cum. volume 2

FGBL MAR 16

P/L total 170

average buy 165.2

average sell 165.37

cum. volume 2

'P/L total ' is in units of instrument;

'volume ' is sum of /absolute/ amounts.

We could have simulated this computation by creating one journal of the initial position and an-
other journal (with reversed amount signs) for the final position, merging all three journals and
then computing P/L.

3.1.2 P/L over time

In the examples above, we computed total P/L. But it is often illuminating to see how P/L evolved
over time. Suppose that a stock trader bought one share at 50, one share at 90 and sold two shares
at 100. These trades resulted in a profit of 60, or an average return of more than +40% (bought at
an average price of 70, and sold at 100).

jnl <- journal(price = c(90, 50, 100),

amount = c(1, 1, -2))

pl(jnl)

P/L total 60

average buy 70

average sell 100

cum. volume 4

'P/L total ' is in units of instrument;

'volume ' is sum of /absolute/ amounts.

That may appear like some pretty good trading. Yet suppose that the order of the trades was

buy at 90 => buy at 50 => sell at 100.

You may have noticed that the journal that we created above already has the trades ordered this
way. We may not know what was traded and when, but there is clearly some information in the
order of the trades and the drawdown that it implies: namely a mark-to-market loss of at least 40
before it recovered. For situations like this, the argument along.timestamp can be used.

28

3.2 More-complicated cases

pl(jnl , along.timestamp = TRUE)

P/L total 0 -40 60

__ realised 0 0 60

__ unrealised 0 -40 0

average buy 70

average sell 100

volume 1 2 4

'P/L total ' is in units of instrument;

'volume ' is sum of /absolute/ amounts.

Note thatwe do not provide an actual timestamp, inwhich case the function implicitly uses integers
1, 2, …, length(amount). With no further arguments, as here, the function computes the running
position and evaluates it at every trade with the trade’s price. This may not be totally accurate
because of bid–ask spreads or other transaction costs. But it provides more information than only
computing the aggregate P/L for the trades.

str(pl(jnl , along.timestamp = TRUE))

List of 1

$:List of 7

..$ timestamp : logi [1:3] NA NA NA

..$ pl : num [1:3] 0 -40 60

..$ realised : num [1:3] 0 0 60

..$ unrealised: num [1:3] 0 -40 0

..$ buy : num 70

..$ sell : num 100

..$ volume : num [1:3] 1 2 4

- attr(*, "class")= chr "pl"

- attr(*, "along.timestamp")= logi TRUE

- attr(*, "instrument")= logi NA

In the previous section, we used vprice to value a final open position. It turns out we can also use
it to value a position over time.

3.2 More-complicated cases

Unfortunately, in real life computing P/L is often more complicated:

• One asset-price unit may not translate into one currency unit: there may be multipliers
a.k.a. contract factors; there are also instruments with variable multipliers, e.g. Australian
government bond futures. An easy to handle this is by computing effective position sizes;

29

3 Computing profit and loss

but it may take some thinking to come upwith a reusable scheme (e.g., looking upmultipliers
in a table).

• Asset positions may map into cashflows in non-obvious ways. The simple case is the delay
in actual payment and delivery of an asset, which is often two or three days. The more
problematic cases are derivatives with daily adjustments of margins. In such cases, one may
need to model (i.e. keep track of) the actual account balances.

• Assets may be denominated in various currencies.

• Currencies themselves may be assets in the portfolio. Depending on how they are traded
(cash, forwards, &c.), computing P/L may not be straightforward.

How – or, rather, to what degree – these complications are handled is, as always, up to the user.
For a single instrument, computing P/L in units of the instrument is usually meaningful, though
perhaps not always intuitive. But adding up the profits and losses of several assets often will often
not work because of multipliers or different currencies. A simple and transparent way is then to
manipulate the journal before P/L is computed (e.g., multiply notionals by their multipliers).

30

4 Computing returns

4.1 Simple returns

The function returns computes returns from prices. The function computes what are often called
simple returns:1 let Pt be the price at point in time t , then

rt ≡ Rt − 1 =
Pt
Pt−1

− 1 =
Pt − Pt−1
Pt−1

. (4.1)

For computing profit/loss in currency units, see Section Computing profit and (or) loss.

Typically, we transform a whole series Pt1, Pt2, Pt3, . . . into returns Rt1,Rt2,Rt3, . . ., which is a one-
liner in R:

simple_returns <- function(x)

x[-1L]/x[-length(x)] - 1

(You may argue that these are two lines: yet even a one-liner, if used repeatedly, should be written
as a function.)

Given a vector of prices – here, the closing values of the DAX, the German stock-market index,
for the first five business days of 2014, – the function computes returns.

P <- c(9400.04 , 9435.15 , 9428, 9506.2 , 9497.84)

simple_returns(P)

[1] 0.003735 -0.000758 0.008294 -0.000879

In fact, using returns as provided by pmwr would have given the same result.

returns(P)

[1] 0.003735 -0.000758 0.008294 -0.000879

pmwr’s returns offers several conveniences. For instance, it will recognise when the input argu-
ment has several columns, such as a matrix or a dataframe. In such a case, it computes returns for
each column.
1The function never computes logarithmic returns.

31

4 Computing returns

returns(cbind(P, P))

P P

[1,] 0.003735 0.003735

[2,] -0.000758 -0.000758

[3,] 0.008294 0.008294

[4,] -0.000879 -0.000879

The argument pad determines how the initial observation is handled. The default, NULL, means that
the first observation is dropped. It is often useful to use NA instead, since in this way the returns
series keeps the same length as the original price series.

data.frame(price = P, returns = returns(P, pad = NA))

price returns

1 9400 NA

2 9435 0.003735

3 9428 -0.000758

4 9506 0.008294

5 9498 -0.000879

Setting pad to 0 can also be useful, because then it is easy to ’rebuild’ the original series with
cumprod. (But see Section Scaling series for a description of the function scale1, which is even
more convenient.)

all.equal(P,

P[1] * cumprod (1 + returns(P, pad = 0)))

[1] TRUE

returns is a generic function, which goes along with some overhead. If you need to compute re-
turns on simple data structures as in the examples above and need fast computation, then you may
also use .returns. This function is the actual workhorse that performs the raw returns calculation.

Besides having methods for numeric vectors and dataframes, returns also understands zoo objects.

dax <- zoo(P,

as.Date(c("2014 -01 -02", "2014 -01 -03",

"2014 -01 -06", "2014 -01 -07",

"2014 -01 -08")))

returns(dax , pad = NA)

2014 -01 -02 2014 -01 -03 2014 -01 -06 2014 -01 -07 2014 -01 -08

NA 0.003735 -0.000758 0.008294 -0.000879

32

4.2 Holding-period returns

Matrices work as well: We create a second series, the prices of the REXP, a German bond-market
index. Then, we combine them into a two-column matrix

rexp <- zoo(c(440.5252 , 440.7944 ,

441.5456 , 441.8197 ,

441.7619) ,

as.Date(c("2014 -01 -02", "2014 -01 -03",

"2014 -01 -06", "2014 -01 -07",

"2014 -01 -08")))

returns(cbind(DAX = dax , REXP = rexp))

DAX REXP

2014 -01 -03 0.003735 0.000611

2014 -01 -06 -0.000758 0.001704

2014 -01 -07 0.008294 0.000621

2014 -01 -08 -0.000879 -0.000131

In fact, zoo objects bring another piece of information – timestamps – that returns can use.

4.2 Holding-period returns

We use two longer series for this section, included in the files PMwR_data_DAX and PMwR_data_REXP.

require("tsdb")

DAX <- read_ts_tables("PMwR_data_DAX",

start = "1970-1-1", return.class = "zoo")

colnames(DAX) <- "DAX"

REXP <- read_ts_tables("PMwR_data_REXP",

start = "1970-1-1", return.class = "zoo")

colnames(REXP) <- "REXP"

str(DAX)

‘’

zoo series from 2014 -01 -02 to 2015 -12 -30

Data: num [1:505 , 1] 9400 9435 9428 9506 9498 ...

- attr(*, "dimnames")=List of 2

..$: NULL

..$: chr "DAX"

Index: Date [1:505] , format: "2014 -01 -02" "2014 -01 -03" ...

str(REXP)

33

4 Computing returns

'zoo' series from 2014 -01 -02 to 2015 -12 -30

Data: num [1:502 , 1] 441 441 442 442 442 ...

- attr(*, "dimnames")=List of 2

..$: NULL

..$: chr "REXP"

Index: Date [1:502] , format: "2014 -01 -02" "2014 -01 -03" "2014 -01 -06" ...

When a timestamp is available, returns can compute returns for specific calendar periods. As an
example, we look at the daily DAX levels in 2014 and 2015.

returns(coredata(DAX), t = index(DAX), period = "month")

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec YTD

2014 -1.0 4.1 -1.4 0.5 3.5 -1.1 -4.3 0.7 0.0 -1.6 7.0 -1.8 4.3

2015 9.1 6.6 5.0 -4.3 -0.4 -4.1 3.3 -9.3 -5.8 12.3 4.9 -5.6 9.6

If you work with a zoo series, you can omit the timestamp t. (Since xts series inherit from zoo,
you can omit timestamps, too.)

returns(DAX , period = "month")

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec YTD

2014 -1.0 4.1 -1.4 0.5 3.5 -1.1 -4.3 0.7 0.0 -1.6 7.0 -1.8 4.3

2015 9.1 6.6 5.0 -4.3 -0.4 -4.1 3.3 -9.3 -5.8 12.3 4.9 -5.6 9.6

The result of the function call is a numeric vector (the return numbers), with additional information
added through attributes. There is also a class attribute, which has value p_returns. The advantage
of this data structure is that it is ‘natural’ to compute with the returns, e.g. computing means,
extremes or similar quantities.

range(returns(DAX , period = "month"))

[1] -0.0928 0.1232

Most useful, however, is probably the print method, whose results you have seen above.

You may also compute monthly returns for matrices, i.e. for more than one asset. But now the
printmethod will behave differently. Suppose we combine the prices of the DAX and of the REXP.
The function’s assumption is that now it would be more convenient to print the returns aligned by
date in a table.

returns(cbind(DAX , REXP), period = "month")

34

4.2 Holding-period returns

DAX REXP

2014 -01 -31 -1.0 1.8

2014 -02 -28 4.1 0.4

2014 -03 -31 -1.4 0.1

2014 -04 -30 0.5 0.3

2014 -05 -30 3.5 0.9

2014 -06 -30 -1.1 0.4

2014 -07 -31 -4.3 0.4

2014 -08 -29 0.7 1.0

2014 -09 -30 0.0 -0.1

2014 -10 -31 -1.6 0.1

2014 -11 -28 7.0 0.4

2014 -12 -30 -1.8 1.0

2015 -01 -30 9.1 0.3

2015 -02 -27 6.6 0.1

2015 -03 -31 5.0 0.3

2015 -04 -30 -4.3 -0.5

2015 -05 -29 -0.4 -0.2

2015 -06 -30 -4.1 -0.8

2015 -07 -31 3.3 0.7

2015 -08 -31 -9.3 0.0

2015 -09 -30 -5.8 0.4

2015 -10 -30 12.3 0.4

2015 -11 -30 4.9 0.3

2015 -12 -30 -5.6 -0.6

If you rather wanted the other, one-row-per-year display, just call the function separately for each
series.

lapply(list(DAX = DAX , REXP = REXP),

returns , period = "month")

$DAX

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec YTD

2014 -1.0 4.1 -1.4 0.5 3.5 -1.1 -4.3 0.7 0.0 -1.6 7.0 -1.8 4.3

2015 9.1 6.6 5.0 -4.3 -0.4 -4.1 3.3 -9.3 -5.8 12.3 4.9 -5.6 9.6

$REXP

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec YTD

2014 1.8 0.4 0.1 0.3 0.9 0.4 0.4 1.0 -0.1 0.1 0.4 1.0 7.1

2015 0.3 0.1 0.3 -0.5 -0.2 -0.8 0.7 0.0 0.4 0.4 0.3 -0.6 0.5

See ?print.preturns for more display options. For instance:

print(returns(DAX , period = "month"),

35

4 Computing returns

digits = 2, year.rows = FALSE , plus = TRUE ,

month.names = 1:12)

2014 2015

1 -1.00 +9.06

2 +4.14 +6.61

3 -1.40 +4.95

4 +0.50 -4.28

5 +3.54 -0.35

6 -1.11 -4.11

7 -4.33 +3.33

8 +0.67 -9.28

9 +0.04 -5.84

10 -1.56 +12.32

11 +7.01 +4.90

12 -1.76 -5.62

YTD +4.31 +9.56

There are methods toLatex and toHTML for monthly returns.

In Sweave documents, you need to use results = tex and echo = false in the chunk options:Sweave

\begin{tabular }{ rrrrrrrrrrrrrr}

<<results=tex ,echo=false >>=

toLatex(returns(DAX , period = "month "))

\end{tabular}

returns accepts other values for period. For yearly returns, use period "year".

returns(DAX , period = "year")

2014 2015

4.3 9.6

returns(merge(DAX , REXP), period = "year")

DAX REXP

2014 4.3 7.1

2015 9.6 0.5

To get annualised returns, use period ann (or actually any string thatmatches the regular expression
^ann; case is ignored).

returns(DAX , period = "ann")

6.9% [02 Jan 2014 -- 30 Dec 2015]

36

4.3 Returns when weights are fixed

Now let us try a shorter period.

returns(window(DAX , end = as.Date("2014-1-31")),

period = "ann")

-1.0% [02 Jan 2014 -- 31 Jan 2014;

less than one year , not annualised]

The function did not annualise: it does not annualise if the time period is shorter than one year.
(You can see the monthly return for January 2014 in the tables above.)

To force annualising, add a !. The exclamationmark serves as amnenomic that it is now imperative
to annualise.

returns(window(DAX , end = as.Date("2014-1-31")),

period = "ann!")

-11.8% [02 Jan 2014 -- 31 Jan 2014; less than one year , but annualised]

There are several more accepted values for period, such as month-to-date (mtd), year-to-date (ytd)
or inception-to-date (itd). The help page of returns lists all options.

4.3 Returns when weights are fixed

Sometimes we may need to compute returns returns for a portfolio of fixed weights, given an
assumption when the portfolio is rebalanced. For instance, we may want to see how a constant
allocation of [0.1, 0.5, 0.4]′ to three funds would have done, assuming that a portfolio is rebalanced
once a month.

If more detail is necessary, then btest can be used; see Section Backtesting. But the simple case
can be done with returns already. Here is an example.

prices <- c(100, 102, 104, 104, 104.5,

2, 2.2, 2.4, 2.3, 2.5,

3.5, 3, 3.1, 3.2, 3.1)

dim(prices) <- c(5, 3)

prices

[,1] [,2] [,3]

[1,] 100 2.0 3.5

[2,] 102 2.2 3.0

[3,] 104 2.4 3.1

[4,] 104 2.3 3.2

[5,] 104 2.5 3.1

37

4 Computing returns

Now suppose we want a constant weight vector, [0.1, 0.5, 0.4]′, but only rebalance at times 1 and
4. (That is, we rebalance the portfolio only with the prices at timestamps 1 and 4.)

returns(prices ,

weights = c(10, 50, 40)/100,

rebalance.when = c(1, 4))

[1] -0.00514 0.06376 -0.01282 0.03146

attr(,"holdings")

[,1] [,2] [,3]

[1,] 0.001 0.250 0.114

[2,] 0.001 0.250 0.114

[3,] 0.001 0.250 0.114

[4,] 0.001 0.227 0.131

[5,] 0.001 0.227 0.131

attr(,"contributions")

[,1] [,2] [,3]

[1,] 0.000000 0.0000 0.0000

[2,] 0.002000 0.0500 -0.0571

[3,] 0.002010 0.0503 0.0115

[4,] 0.000000 -0.0236 0.0108

[5,] 0.000481 0.0435 -0.0125

In fact, rebalancing at the prices in 1 is always implied.

The result is the return series plus two additional pieces of information, stored in attributes.

holdings A matrix with the same dimensions as the price matrix we used as input. It provides
the hypothetical holdings that were used to compute the returns. Note that these holdings
only change at timestamps 1 and 4 in the example.

contributions Anothermatrix; it provides the return contributions of the single assets (in columns)
in each period (in rows).

4.4 Return contribution

Let w(t , i) be the weight of portfolio segment i at the beginning of period t , and let r(t , i) be the
return of segment i over period t . Then the portfolio return over period t , rP(t) is a weighted sum
of the N segment returns.

rP(t) =
N∑
i=1

r(t , i)w(t , i) . (4.2)

38

4.5 Returns when there are external cashflows

When the weights sum to unity, we may also write

1 + rP(t) =
N∑
i=1

1 + r(t , i)w(t , i) (4.3)

or, defining 1 + r ≡ R,

RP(t) =
N∑
i=1

R(t , i)w(t , i) . (4.4)

The total return contribution of segment i over time equals

T−1∑
t=1

(
R(t , i)w(t , i)

T∏
s=t+1

RP(s) − 1

)
+ r(T , i)w(T , i)︸ ︷︷ ︸

final period

. (4.5)

In this way, a segment’s return contribution in on period is reinvested in the overall portfolio in
succeeding periods.

The calculation is provided in the function rc (‘return contribution’).

weights <- rbind(c(0.25, 0.75), ## the assets ' weights

c(0.40, 0.60), ## during three periods

c(0.25, 0.75))

R <- rbind(c(1 , 0), ## the assets ' returns

c(2.5, -1.0), ## during these periods

c(-2 , 0.5))/100

rc(R, weights , segment = c("equities", "bonds"))

$period_contributions

timestamp equities bonds total

1 1 0.0025 0.00000 0.00250

2 2 0.0100 -0.00600 0.00400

3 3 -0.0050 0.00375 -0.00125

$total_contributions

equities bonds total

0.007494363 -0.002242500 0.005251862

4.5 Returns when there are external cashflows

The function unit_prices helps to compute time-weighted returns of a portfolio when there are in-
and outflows. (The term time-weighted returns is actually a misnomer, as returns are not weighted
at all. They are only time-weighted if time-periods are of equal length.)

39

4 Computing returns

NAV <- data.frame(timestamp = seq(as.Date("2017-1-1"),

as.Date("2017-1-10"),

by = "1 day"),

NAV = c(0 ,101:104 ,205:209))

cf <- data.frame(timestamp = c(as.Date("2017-1-1"),

as.Date("2017-1-5")),

cashflow = c(100, 100))

unit_prices(NAV , cf)

timestamp NAV price shares cashflow new_shares total_shares NAV_after_cf

1 2017 -01 -01 0 100.000 0.00000 100 1.000000 1.00000

100

2 2017 -01 -02 101 101.000 1.00000 0 0.000000 1.00000

101

3 2017 -01 -03 102 102.000 1.00000 0 0.000000 1.00000

102

4 2017 -01 -04 103 103.000 1.00000 0 0.000000 1.00000

103

5 2017 -01 -05 104 104.000 1.00000 100 0.961538 1.96154

204

6 2017 -01 -06 205 104.510 1.96154 0 0.000000 1.96154

205

7 2017 -01 -07 206 105.020 1.96154 0 0.000000 1.96154

206

8 2017 -01 -08 207 105.529 1.96154 0 0.000000 1.96154

207

9 2017 -01 -09 208 106.039 1.96154 0 0.000000 1.96154

208

10 2017 -01 -10 209 106.549 1.96154 0 0.000000 1.96154

209

40

5 Backtesting

This chapter explains how to test trading strategies with the btest function.

5.1 Decisions

At a given instant in time (in actual life, ‘now’), a trader needs to answer the following questions:

1. Do I want to compute a new target portfolio, yes or no? If yes, go ahead and compute the
new target portfolio.

2. Given the target portfolio and the actual portfolio, do I want to rebalance (i.e. close the gap
between the actual portfolio and the target portfolio)? If yes, rebalance.

If such a decision is not just hypothetical, then the answer to the second question may lead to
a number of orders sent to a broker. Note that many traders do not think in terms of stock (i.e.
balances) as we did here; rather, they think in terms of flow (i.e. orders). Both approaches are
equivalent, but the described onemakes it easier to handlemissed trades and synchronise accounts.

During a backtest, we will simulate the decisions of the trader. How precisely we simulate de-
pends on the trading strategy. The btest function is meant as a helper function to simulate these
decisions. The logic for the decisions described above must be coded in the functions do.signal,
signal and do.rebalance.

Implementing btest required a number of decision, too: (i) what to model (i.e. how to simulate the
trader), and (ii) how to code it. As an example for point (i): how precisely do we want to model the
order process (e.g. use limit orders?, allow partial fills?) Example for (ii): the backbone of btest is
a loop that runs through the data. Loops are slow in R when compared with compiled languages,
so should we vectorise instead? Vectorisation is indeed often possible, namely if trading is not
path-dependent. If we have already a list of trades, we can efficiently transform them into a profit-
and-loss in R without relying on an explicit loop (see Section Computing profit and (or) loss). Yet,
one advantage of looping is that the trade logic is more similar to actual trading; we may even be
able to reuse some code in live trading.

Altogether, the aim for btest is to stick to the functional paradigm as much as possible. Functions
receive arguments and evaluate to results; but they do not change their arguments, nor do they
assign or change other variables ‘outside’ their environment, nor do the results depend on some
variable outside the function. This creates a problem, namely how to keep track of state. If we
know what variables need to be persistent, we could pass them to the function and always have

41

5 Backtesting

them returned. But we would like to be more flexible, so we can pass an environment; examples
are below. To make that clear: functional programming should not be seen as a yes-or-no decision;
it is a matter of degree. And more of the functional approach can help already.

5.2 Data structure

All computations of btest will be based on one or several price series of length T. Internally, these
prices are stored in numeric matrices.

Prices are passed as argument prices. For a single asset, this must be a matrix of prices with four
columns: open, high, low and close.

For n assets, you need to pass a list of length four: prices[[1]] must be a matrix with n columns
containing the open prices for the assets; prices[[2]] is a matrix with the high prices, and so on.
For instance, with two assets, you need four matrices with two columns each:

open high low close

+-+-+ +-+-+ +-+-+ +-+-+

| | | | | | | | | | | |

| | | | | | | | | | | |

| | | | | | | | | | | |

| | | | | | | | | | | |

| | | | | | | | | | | |

+-+-+ +-+-+ +-+-+ +-+-+

If only close prices are used, then for a single asset, use either a matrix of one column or a numeric
vector. For multiple assets a list of length one must be passed, containing a matrix of close prices.
For example, with 100 close prices of 5 assets, the prices should be arranged in a matrix p of size
100 times 5; and prices = list(p).

The btest function runs from b+1 to T. The variable b is the burn-in and it needs to be a positive
integer. When we take decisions that are based on past data, we will lose at least one data point.
In rare cases b may be zero.

Here is an important default: at time =t=, we can use information up to time t-1. Suppose that t
were 4. We may use all information up to time 3, and trade at the open in period 4:

t time open high low close

1 HH:MM:SS <--\

2 HH:MM:SS <-- - use information

3 HH:MM:SS _________________________ <--/

4 HH:MM:SS X <- trade here

5 HH:MM:SS

We could also trade at the close:

42

5.3 Function arguments

t time open high low close

1 HH:MM:SS <-- \

2 HH:MM:SS <-- - use information

3 HH:MM:SS _________________________ <-- /

4 HH:MM:SS X <-- trade here

5 HH:MM:SS

No, we cannot trade at the high or low. (Some people like the idea, as a robustness check, to always
buy at the high, sell at the low. Robustness checks – forcing a bit of bad luck into the simulation –
are a good idea, notably bad executions. High/low ranges can inform such checks, but using these
ranges does not go far enough, and is more of a good story than a meaningful test.)

5.3 Function arguments

5.3.1 Available information within functions

btest expects as arguments a number of functions, such as signal; see the following section for
a complete list. The default is to specify no arguments to these functions, because they can all
access the following ‘objects’. These objects actually are, with the exception of Globals, themselves
functions that can access certain data. These functions can only read; there are no replacement
functions. The exception is Globals, which is an environment, and which can explicitly be used
for writing (i.e. storing data).

Open open prices

High high prices

Low low prices

Close close prices

Wealth the total wealth (cash plus positions) at a given point in time

Cash cash (in accounting currency)

Time current time (an integer)

Timestamp the timestamp when that is specified (i.e. when the argument timestamp is supplied);
if not, it defaults to Time

Portfolio the current portfolio

SuggestedPortfolio the currently-suggested portfolio

Globals an environment (not a function)

43

5 Backtesting

All functions take as their first argument a lag, which defaults to 1. So to get the most recent close
price, say

Close()

which is the same as Close(lag = 1).

The lag can be a vector, too: the expression

Close(Time ():1)

for instance will return all available close prices. So in period 11, say, you want close prices for
lags 10, 9, …, 1. Hence, to receive prices in their correct order, the lag sequence must always be in
reverse order.

If you find it awkward to specify the lag in this reverse order, you may use the argument n instead,
which specifies to retrieve the last n data points. So the above Close(Time():1) is equivalent to

Close(n = Time ())

and saying

Close(n = 10)

will get you the last ten closing prices.

5.3.2 Function arguments

signal The function signal uses information until and including t-1 and returns the suggested
portfolio (a vector) to be held at t. This position should be in units of the instruments; if
you prefer to work with weights, then you should set convert.weights to TRUE. Then, the
value returned by signal will be interpreted as weights and will be automatically converted
to position sizes.

do.signal do.signal uses information until and including t-1 and must return TRUE or FALSE to
indicate whether a signal (i.e. new suggested position) should be computed. This is useful
when the signal computation is costly and only be done at specific points in time. If the
function is not specified, it defaults to function() TRUE. Instead of a function, this may also
be

• a vector of integers, which then indicate the points in time when to compute a position,
or

• a vector of logical values, which then indicate the points in time when to compute a
position, or

• a vector that inherits from the class of timestamp (e.g. Date), or

44

5.4 Examples: A single asset

• one of the keywords firstofmonth or lastofmonth (in this case, timestampmust inherit
from Date or be coercible to Date).

do.rebalance just like do.signal, but refers to the actual trading. If the function is not specified,
it defaults to function() TRUE. Note that rebalancing can typically not take place at a higher
frequency than implied by signal. That is because calling signal leads to a position, and
when this position does not change (i.e. signal was not called), there is actually no need
to rebalance. So do.rebalance is normally used when rebalancing should be done less often
that signal computation, e.g. when the decision whether to trade or not is conditional on
something.

print.info The function is called at the end of an iteration. Whatever it returns will be ignored
since it is called for its side effect: print information to the screen, into a file or into some
other connection.

cashflow The function is called at the end of each iteration; its value is added to the cash. The
function provides a clean way to, for instance, add accrued interest to or subtract fees from
a strategy.

5.4 Examples: A single asset

It is best to describe the btest function through a number of simple examples.

5.4.1 A useless first example

I really like simple examples. Suppose we have a single instrument, and we use only close prices.
The trading rule is to buy, and then to hold forever. All we need is the time series of the prices and
the signal function. As an instrument we use the EURO STOXX 50 future with expiry September
2015.

timestamp <- structure(c(16679L, 16680L, 16681L, 16682L,

16685L, 16686L, 16687L, 16688L,

16689L, 16692L, 16693L),

class = "Date")

prices <- c(3182, 3205, 3272, 3185, 3201,

3236, 3272, 3224, 3194, 3188, 3213)

data.frame(timestamp , prices)

timestamp prices

1 2015 -09 -01 3182

2 2015 -09 -02 3205

3 2015 -09 -03 3272

4 2015 -09 -04 3185

5 2015 -09 -07 3201

45

5 Backtesting

6 2015 -09 -08 3236

7 2015 -09 -09 3272

8 2015 -09 -10 3224

9 2015 -09 -11 3194

10 2015 -09 -14 3188

11 2015 -09 -15 3213

Sep 01 Sep 05 Sep 09 Sep 13

3180

3200

3220

3240

3260

The signal function is very simple indeed.

signal <- function ()

1

signal must be written so that it returns the suggested position in units of the asset. In this first
example, the suggested position always is 1 unit. It is only a suggested portfolio because we can
specify rules whether or not to trade. Examples follow below.

To test this strategy, we call btest. The initial cash is zero per default, so initial wealth is also zero
in this case. We can change it through the argument initial.cash.

(solution <- btest(prices = prices , signal = signal))

initial wealth 0 => final wealth 8

46

5.4 Examples: A single asset

The function returns a list with a number of components, but they are not printed. Instead, a
simple print method displays some information about the results. In this case, it tells us that the
total equity of the strategy increased from 0 to 8.

We arrange more details into a data.frame. suggest is the suggested position; position is the
actual position.

trade_details <- function(solution , prices)

data.frame(price = prices ,

suggest = solution$suggested.position ,

position = unname(solution$position),

wealth = solution$wealth ,

cash = solution$cash)

trade_details(unclass(solution), prices)

price suggest position wealth cash

1 3182 0 0 0 0

2 3205 1 1 0 -3205

3 3272 1 1 67 -3205

4 3185 1 1 -20 -3205

5 3201 1 1 -4 -3205

6 3236 1 1 31 -3205

7 3272 1 1 67 -3205

8 3224 1 1 19 -3205

9 3194 1 1 -11 -3205

10 3188 1 1 -17 -3205

11 3213 1 1 8 -3205

We bought in the second period because the default setting for the burnin b is 1. Thus, we lose one
observation. In this particular case here, we do not rely in any way on the past; hence, we set b to
zero. With this setting, we buy at the first price and hold until the end of the data.

solution <- btest(prices = prices , signal = signal ,

b = 0)

trade_details(solution , prices)

price suggest position wealth cash

1 3182 1 1 0 -3182

2 3205 1 1 23 -3182

3 3272 1 1 90 -3182

4 3185 1 1 3 -3182

5 3201 1 1 19 -3182

6 3236 1 1 54 -3182

7 3272 1 1 90 -3182

8 3224 1 1 42 -3182

9 3194 1 1 12 -3182

47

5 Backtesting

10 3188 1 1 6 -3182

11 3213 1 1 31 -3182

If you prefer the trades only, i.e. not the position series, the solution also contains a journal. (See
Keeping track of transactions: journals for more on journals.)

journal(solution)

instrument timestamp amount price

1 asset 1 1 1 3182

1 transaction

To make the journal more informative, we can pass timestamp and instrument information when
we call btest.

journal(btest(prices = prices , signal = signal , b = 0,

timestamp = timestamp , ## defined above ,

together with prices

instrument = "FESX SEP 2015"))

instrument timestamp amount price

1 FESX SEP 2015 2015 -09 -01 1 3182

1 transaction

Before we go to the next examples, a final remark, on data frequency. I have used daily data here,
but any other frequency, also intraday data, is fine. btest will not care of what frequency your
data are or whether your data are regularly spaced; it will only loop over the observations that it is
given. It is your own responsibility to write signal (and other functions) in such a way that they
encode a meaningful trade logic.

5.4.2 More-useful examples

Now we make our strategy slightly more selective. The trading rule is to have a position of 1 unit
of the asset whenever the last observed price is below 3200 and to have no position when it the
price is above

1. The signal function could look like this.

signal <- function () {

if (Close() < 3200)

1

else

0

}

48

5.4 Examples: A single asset

If you like to write clever code, you may as well have written this:

signal <- function ()

Close() < 3200

The logical value of the comparison Close() < 3200 would be converted to either 0 or 1. But the
more verbose version above is clearer.1

We call btest and check the results.

solution <- btest(prices = prices , signal = signal)

trade_details(solution , prices)

price suggest position wealth cash

1 3182 0 0 0 0

2 3205 1 1 0 -3205

3 3272 0 0 67 67

4 3185 0 0 67 67

5 3201 1 1 67 -3134

6 3236 0 0 102 102

7 3272 0 0 102 102

8 3224 0 0 102 102

9 3194 0 0 102 102

10 3188 1 1 102 -3086

11 3213 1 1 127 -3086

(Yes, this strategy works better than the simple buy-and-hold, but I hope you agree that this is only
because of luck.)

The argument initial.position specifies the initial position; default is no position. Suppose we
had already held one unit of the asset.

solution <- btest(prices = prices , signal = signal ,

initial.position = 1)

Then the results would have looked as follows.

trade_details(solution , prices)

price suggest position wealth cash

1 3182 1 1 3182 0

2 3205 1 1 3205 0

3 3272 0 0 3272 3272

1Remember what Brian Kernighan said: Everyone knows that debugging is twice as hard as writing a program in the
first place. So if you’re as clever as you can be when you write it, how will you ever debug it?

49

5 Backtesting

4 3185 0 0 3272 3272

5 3201 1 1 3272 71

6 3236 0 0 3307 3307

7 3272 0 0 3307 3307

8 3224 0 0 3307 3307

9 3194 0 0 3307 3307

10 3188 1 1 3307 119

11 3213 1 1 3332 119

In the example above, we use the close price, but we do not access the data directly. A function
Close is defined by btest and passed as an argument to signal. Note that we do not add it as
a formal argument to signal since this is done automatically. In fact, doing it manually would
trigger an error message:

signal <- function(Close = NULL) ## ERROR: argument name

1 ## 'Close ' not allowed

Error in btest(prices = prices , signal = signal) :

'Close ' cannot be used as an argument name for 'signal '

Similarly, we have functions Open, High and Low; see Section 5.3 above for all functions.

Suppose we wanted to add a variable: a threshold that tells us when to buy. This would need to
be an argument to signal; it would also need to be passed with the ... argument of btest.

signal <- function(threshold) {

if (Close() < threshold)

1

else

0

}

solution <- btest(prices = prices ,

signal = signal ,

threshold = 3190)

trade_details(solution , prices)

price suggest position wealth cash

1 3182 0 0 0 0

2 3205 1 1 0 -3205

3 3272 0 0 67 67

4 3185 0 0 67 67

5 3201 1 1 67 -3134

6 3236 0 0 102 102

7 3272 0 0 102 102

50

5.4 Examples: A single asset

8 3224 0 0 102 102

9 3194 0 0 102 102

10 3188 0 0 102 102

11 3213 1 1 102 -3111

So far we have treated Close as a function without arguments, but actually it has an argument lag
that defaults to 1. Suppose the rule were to buy if the last close is below the second-to-last close.
signal could look like this.

signal <- function () {

if (Close(1L) < Close(2L))

1

else

0

}

We could also have written (Close() < Close(2L)). In any case, the rule uses the close prices of
yesterday and of the day before yesterday, so we need to increase b.

trade_details(btest(prices = prices , signal = signal , b = 2),

prices)

price suggest position wealth cash

1 3182 0 NA NA 0

2 3205 0 0 0 0

3 3272 0 0 0 0

4 3185 0 0 0 0

5 3201 1 1 0 -3201

6 3236 0 0 35 35

7 3272 0 0 35 35

8 3224 0 0 35 35

9 3194 1 1 35 -3159

10 3188 1 1 29 -3159

11 3213 1 1 54 -3159

If we want to trade a different size, we have signal return the desired value.

signal <- function ()

if (Close() < 3200)

2 else 0

trade_details(btest(prices = prices , signal = signal), prices)

price suggest position wealth cash

1 3182 0 0 0 0

2 3205 2 2 0 -6410

51

5 Backtesting

3 3272 0 0 134 134

4 3185 0 0 134 134

5 3201 2 2 134 -6268

6 3236 0 0 204 204

7 3272 0 0 204 204

8 3224 0 0 204 204

9 3194 0 0 204 204

10 3188 2 2 204 -6172

11 3213 2 2 254 -6172

A often-used way to specify a trading strategy is to map past prices into +1, 0 or -1 for long, flat
or short. A signal is often only given at a specified point (like in ‘buy one unit now’). Example:
suppose the third day is a Thursday, and our rule says ‘buy after Thursday’.

signal <- function ()

if (Time() == 3L)

1 else 0

trade_details(btest(prices = prices , signal = signal),

prices)

price suggest position wealth cash

1 3182 0 0 0 0

2 3205 0 0 0 0

3 3272 0 0 0 0

4 3185 1 1 0 -3185

5 3201 0 0 16 16

6 3236 0 0 16 16

7 3272 0 0 16 16

8 3224 0 0 16 16

9 3194 0 0 16 16

10 3188 0 0 16 16

11 3213 0 0 16 16

But this is not what we wanted. If the rule is to buy and then keep the long position, we should
have written it like this.

signal <- function ()

if (Time() == 3L)

1 else Portfolio ()

The function Portfolio evaluates to last period’s portfolio. Like Close, its first argument sets the
time lag, which defaults to 1.

trade_details(btest(prices = prices , signal = signal), prices)

52

5.4 Examples: A single asset

prices sp asset.1 wealth cash

1 3182 0 0 0 0

2 3205 0 0 0 0

3 3272 0 0 0 0

4 3185 1 1 0 -3185

5 3201 1 1 16 -3185

6 3236 1 1 51 -3185

7 3272 1 1 87 -3185

8 3224 1 1 39 -3185

9 3194 1 1 9 -3185

10 3188 1 1 3 -3185

11 3213 1 1 28 -3185

We may also prefer to specify signal so that it evaluates to a weight; for instance, after a portfo-
lio optimisation. In such a case, you need to set convert.weights to TRUE. (Make sure to have a
meaningful initial wealth: 5 percent of nothing is nothing.)

signal <- function ()

0.05

solution <- btest(prices = prices ,

signal = signal ,

initial.cash = 100,

convert.weights = TRUE)

trade_details(solution , prices)

prices sp asset.1 wealth cash

1 3182 0.00000 0.00000 100 100.0

2 3205 0.00157 0.00157 100 95.0

3 3272 0.00156 0.00156 100 95.0

4 3185 0.00153 0.00153 100 95.1

5 3201 0.00157 0.00157 100 95.0

6 3236 0.00156 0.00157 100 95.0

7 3272 0.00155 0.00155 100 95.0

8 3224 0.00153 0.00153 100 95.1

9 3194 0.00155 0.00155 100 95.0

10 3188 0.00157 0.00157 100 95.0

11 3213 0.00157 0.00157 100 95.0

Note that until now we – potentially – rebalanced in every period. If you do not want that, we
need to specify do.rebalance.

do.rebalance <- function () {

if (sum(abs(

SuggestedPortfolio (0) - SuggestedPortfolio ())) > 2e-5)

53

5 Backtesting

TRUE

else

FALSE

}

solution <- btest(prices = prices ,

signal = signal ,

initial.cash = 100,

do.rebalance = do.rebalance ,

convert.weights = TRUE)

trade_details(solution , prices)

price suggest position wealth cash

1 3182 0.0000 0.0000 100 100.00

2 3205 0.0000 0.0000 100 100.00

3 3272 0.0000 0.0000 100 100.00

4 3185 0.0306 0.0306 100 2.66

5 3201 0.0000 0.0000 100 100.49

6 3236 0.0000 0.0000 100 100.49

7 3272 0.0000 0.0000 100 100.49

8 3224 0.0000 0.0000 100 100.49

9 3194 0.0000 0.0000 100 100.49

10 3188 0.0000 0.0000 100 100.49

11 3213 0.0000 0.0000 100 100.49

do.rebalance is called after signal. Hence, the suggested position is known and the lag should be
zero (’SuggestedPortfolio(0)’).

The tol argumentworks similarly: it instructs btest to only rebalancewhen themaximumabsolute
suggested change in any single position is greater than tol. Default is 0.00001, which practically
means always rebalance.

solution <- btest(prices = prices ,

signal = signal ,

initial.cash = 100,

tol = 2e-5,

convert.weights = TRUE)

trade_details(solution , prices)

prices sp asset.1 wealth cash

1 3182 0.00000 0.00000 100 100.0

2 3205 0.00157 0.00157 100 95.0

3 3272 0.00156 0.00157 100 95.0

4 3185 0.00153 0.00153 100 95.1

54

5.4 Examples: A single asset

5 3201 0.00157 0.00157 100 95.0

6 3236 0.00156 0.00157 100 95.0

7 3272 0.00155 0.00155 100 95.0

8 3224 0.00153 0.00155 100 95.0

9 3194 0.00155 0.00155 100 95.0

10 3188 0.00157 0.00155 100 95.0

11 3213 0.00157 0.00157 100 95.0

Passing environments

To keep information persistent, we can use environments. As an example, we store (and update)
the most recent entry price.

notepad <- new.env()

notepad$entry <- numeric(length(prices))

signal <- function(threshold , notepad) {

notepad$entry[Time(0L)] <- notepad$entry[Time(1L)]

if (Close() < threshold) {

if (Portfolio () < 1)

notepad$entry[Time(0L)] <- Close(0L)

1

} else {

0

}

}

solution <- btest(prices = prices ,

signal = signal ,

threshold = 3200,

notepad = notepad)

cbind(trade_details(solution , prices), entry = notepad$entry)

price suggest position wealth cash entry

1 3182 0 0 0 0 0

2 3205 1 1 0 -3205 3205

3 3272 0 0 67 67 3205

4 3185 0 0 67 67 3205

5 3201 1 1 67 -3134 3201

6 3236 0 0 102 102 3201

7 3272 0 0 102 102 3201

8 3224 0 0 102 102 3201

9 3194 0 0 102 102 3201

55

5 Backtesting

10 3188 1 1 102 -3086 3188

11 3213 1 1 127 -3086 3188

Let us check.

subset(journal(solution), amount > 0)

btest provides an environment Globals for exactly such purposes.

signal <- function(threshold) {

Globals$entry[Time(0L)] <- Globals$entry[Time(1L)]

if (Close() < threshold) {

if (Portfolio () < 1)

Globals$entry[Time(0L)] <- Close(0L)

1

} else {

0

}

}

solution <- btest(prices = prices ,

signal = signal ,

threshold = 3200,

include.data = TRUE)

cbind(trade_details(solution , prices),

entry = solution$Globals$entry)

price suggest position wealth cash entry

1 3182 0 0 0 0 NA

2 3205 1 1 0 -3205 3205

3 3272 0 0 67 67 3205

4 3185 0 0 67 67 3205

5 3201 1 1 67 -3134 3201

6 3236 0 0 102 102 3201

7 3272 0 0 102 102 3201

8 3224 0 0 102 102 3201

9 3194 0 0 102 102 3201

10 3188 1 1 102 -3086 3188

11 3213 1 1 127 -3086 3188

5.5 Examples: Several assets

It does not really make a difference whether btest is called with a single or with several instru-
ments. The pattern in signal is still to call Close() and friends to obtain data, but now these

56

5.5 Examples: Several assets

functions will return matrices with more than one column. For instance, when you have 5 assets,
then Close(n = 250) would return a matrix of size 250 times 5.

5.5.1 A simple example

prices1 <- c(100,98, 98, 97, 96, 98 ,97 ,98 ,99 ,101)

prices2 <- c(100 ,99 ,100 ,102 ,101 ,100 ,96 ,97 ,95 ,82)

prices <- cbind(A = prices1 , B = prices2)

signal <- function ()

if (Close ()[1L] > Close ()[2L])

c(2, 0) else c(0, 1)

(solution <- btest(prices = list(prices),

signal = signal ,

b=2))

trade_details <- function(solution , prices)

data.frame(price = prices ,

suggest = solution$suggested.position ,

position = solution$position , ## do not unname

wealth = solution$wealth ,

cash = solution$cash)

trade_details(solution , prices)

price.A price.B suggest.A suggest.B position.A position.B wealth cash

1 100 100 0 0 NA NA NA 0

2 98 99 0 0 0 0 0 0

3 98 100 0 1 0 1 0 -100

4 97 102 0 1 0 1 2 -100

5 96 101 0 1 0 1 1 -100

6 98 100 0 1 0 1 0 -100

7 97 96 0 1 0 1 -4 -100

8 98 97 2 0 2 0 -3 -199

9 99 95 2 0 2 0 -1 -199

10 101 82 2 0 2 0 3 -199

journal(solution)

instrument timestamp amount price

1 B 3 1 100

2 A 8 2 98

3 B 8 -1 97

57

5 Backtesting

3 transactions

5.6 Common tasks

There is more than one way to accomplish a certain task.

5.6.1 Remembering an entry price

In signal, assign the current price (with lag 0) to Globals. (That is easiest because do.rebalance

may not be defined.)

5.6.2 Delaying signals

Add a random variable to to do.rebalance:

if (runif (1) > prob_of_delay)

TRUE else FALSE

If TRUE, rebalancing will take place.

5.6.3 Specifying when to compute a signal and trade

btest takes two functions, do.signal and do.rebalance, that tell the algorithm when to compute a
new portfolio and when to rebalance. There are different ways to specify these dates: as a function
that returns TRUE or FALSE (most general), but also as integers, logicals or actual timestamps (e.g.
dates).

Supplying particular timestamps is useful when you know you want to trade on a specific calendar
day, say. That is OK because you know in advance when this calendar is going to be. But be
careful when you use other information to specify when to trade. The following examples are not
equivalent:

btest(prices = prices ,

signal = signal ,

do.signal = prices > 3600)

btest(prices = prices ,

signal = signal ,

do.signal = function () Close() > 3600)

58

5.6 Common tasks

Loosely speaking, both variations compute a signal and trade only when prices is above 3600. But
in the first version, there will be no time lag: if the prices exceeds 3600 at time ti, we will trade at
ti. In the second example, Close() comes with a default lag of 1: if the price exceeds 3600 at ti, we
will trade at ti+1, which is the more realistic case.

When timestamp is of a type that can be coerced to Date, you can also use the keywords firstof-
month and lastofmonth:

btest(prices = prices ,

signal = signal ,

do.signal = "firstofmonth")

5.6.4 Writing a log

Specify the function print.info. The function is called at the very end of an iteration, so it is best
to use no time lag. An example

1 print.info <- function () {

2 cat("Time",

3 sprintf("%2d", Time(0L)), "...",

4 sprintf("%3d", Wealth (0L)), "\n")

5 flush.console ()

6 }

And since cat has a file argument, you can have it write such information into a logfile.

5.6.5 Selecting parameters: calling btest recursively

Suppose you have a strategy that depends on a parameter vector θ . For a given θ , the signal for
the strategy would look like this.

signal <- function(theta) {

compute position as a function of theta

}

Now suppose we do not know theta. We might want to test several values, and then keep the best
one. For this, we need to call btest recursively: at a point in time t, the strategy simulates the
results for various values for theta and chooses the best theta, according to some criterion f.

A useful idiom is this:

signal <- function(theta) {

if (not defined theta) {

- run btest with theta_1, ... \theta_n, select best theta

- theta = argmin_theta f(btest(theta_i))

59

5 Backtesting

}

compute position as a function of theta

}

btest will first be invoked without θ (or NULL). When the function calls signal, θ is not defined
and signal will call btest with a specified θ .

Let us look at an actual example.

require("tseries")

require("zoo")

require("runStats")

tmp <- get.hist.quote ("^ GSPC",

start = "2010 -01 -01" ,

end = "2013 -12 -31" , quote = "Close ")

signal <- function(Data) {

if (is.na(Data$N)) {

message(Timestamp (0))

price <- Close(n = 500)

Ns <- c(10 ,20)

Data1 <- list(N = 10, hist = 200)

res1 <- btest(price , signal , Data = Data1 , b = 200)

Data2 <- list(N = 20, hist = 200)

res2 <- btest(price , signal , Data = Data2 , b = 200)

message("N 10 : ", round(tail(res1$wealth , 1), 2))

message("N 20 : ", round(tail(res2$wealth , 1), 2))

N <- if (tail(res1$wealth , 1) > tail(res2$wealth , 1))

10

else

20

message("N is ---> ", N, "\n")

} else {

N <- Data$N

}

60

5.6 Common tasks

##

price <- Close(n = Data$hist)

MA <- runStats("mean", price , N = N)

pos <- 0

if (Close() > tail(MA, 1))

pos <- 1

pos

}

Data <- list(N = NA, hist = 200)

res <- btest(tmp$Close , signal ,

Data = Data ,

b = 500,

initial.cash = 100,

convert.weights = TRUE ,

timestamp = index(tmp))

par(mfrow = c(2,1))

plot(index(tmp), res$wealth , type = "s")

plot(tmp)

61

6 Rebalancing a portfolio

The function rebalance computes the transactions necessary for moving from one portfolio to
another.

6.1 Usage with unnamed vectors

The current portfolio is given in currency units; the target portfolio is given in weights. To
compute the required order sizes, we also need the current prices of the assets. When current,
target and price are unnamed, the assets’ positions in the vectors need to match.

1 current <- c(0 ,0 ,100 ,100)

2 prices <- c(1,1,1,1)

3 target <- c(0.25, 0.25, 0.25, 0.25)

4 rebalance(current , target , prices , match.names = FALSE)

price current value % target value % order

1 1 0 0 0.0 50 50 25.0 50

2 1 0 0 0.0 50 50 25.0 50

3 1 100 100 50.0 50 50 25.0 -50

4 1 100 100 50.0 50 50 25.0 -50

Notional: 200. Amount invested: 200. Total (2-way) turnover: 200.

The current portfolio may also be empty, in which case current can be set to 0. Then, of course,
we need to specify a notional for the target portfolio.

current <- 0

rebalance(current , target , prices ,

match.names = FALSE , notional = 100)

price current value % target value % order

1 1 0 0 0.0 25 25 25.0 25

2 1 0 0 0.0 25 25 25.0 25

3 1 0 0 0.0 25 25 25.0 25

4 1 0 0 0.0 25 25 25.0 25

Notional: 100. Amount invested: 100. Total (2-way) turnover: 100.

63

6 Rebalancing a portfolio

We may also specify the target portfolio as a single number.

current <- c(5, 5, 100, 100)

target <- 0 ## liquidate the portfolio

rebalance(current , target , prices , match.names = FALSE)

price current value % target value % order

1 1 5 5 2.4 0 0 0.0 -5

2 1 5 5 2.4 0 0 0.0 -5

3 1 100 100 47.6 0 0 0.0 -100

4 1 100 100 47.6 0 0 0.0 -100

Notional: 210. Amount invested: 0. Total (2-way) turnover: 210.

every assets gets a weight of 20%

target <- 0.2

rebalance(current , target , prices , match.names = FALSE , notional = 100)

price current value % target value % order

1 1 5 5 5.0 20 20 20.0 15

2 1 5 5 5.0 20 20 20.0 15

3 1 100 100 100.0 20 20 20.0 -80

4 1 100 100 100.0 20 20 20.0 -80

Notional: 100. Amount invested: 80. Total (2-way) turnover: 190.

6.2 Usage with named vectors

More usefully, rebalance can also use the names of the vectors current, target and price. The
argument match.names must be set to TRUE for this (which is the default, actually).

prices <- c(1,1,1,1)

names(prices) <- letters [1:4]

current <- c(a = 0, b = 10)

target <- c(a = 0, d = 0.5)

rebalance(current , target , prices)

price current value % target value % order

b 1 10 10 100.0 0 0 0.0 -10

d 1 0 0 0.0 5 5 50.0 5

Notional: 10. Amount invested: 5. Total (2-way) turnover: 15.

64

6.3 Optimisation

To also show all instruments, set the argument drop.zero to FALSE.

print(rebalance(current , target , prices), drop.zero = FALSE)

price current value % target value % order

a 1 0 0 0.0 0 0 0.0 0

b 1 10 10 100.0 0 0 0.0 -10

d 1 0 0 0.0 5 5 50.0 5

Notional: 10. Amount invested: 5. Total (2-way) turnover: 15.

6.3 Optimisation

Whenever you need to round positions, you may prefer to do an actual optimisation. The ideal
place for this optimisation is the original objective function, not in rebalance. And the differences,
if there are any at all, are typically small. But here is an example.

n <- 10

target <- runif(n)

target <- target/sum(target)

price <- sample (10:200 , n, replace = TRUE)

s <- sample(c(1,5,10,100), n, replace = TRUE ,

prob = c(0.4 ,0.4 ,0.1 ,0.1))

data.frame(price = price , lot.size = s)

price lot.size

1 178 5

2 37 5

3 62 5

4 93 1

5 81 5

6 111 5

7 146 5

8 154 5

9 187 1

10 138 1

Now suppose we have only a limited budget available.

budget <- 10000

x <- rebalance(0, target , notional = budget ,

price = price , match.names = FALSE)

x

65

6 Rebalancing a portfolio

price current value % target value % order

1 178 0 0 0.0 4 712 7.1 4

2 37 0 0 0.0 40 1480 14.8 40

3 62 0 0 0.0 20 1240 12.4 20

4 93 0 0 0.0 16 1488 14.9 16

5 81 0 0 0.0 13 1053 10.5 13

6 111 0 0 0.0 6 666 6.7 6

7 146 0 0 0.0 4 584 5.8 4

8 154 0 0 0.0 6 924 9.2 6

9 187 0 0 0.0 5 935 9.3 5

10 138 0 0 0.0 7 966 9.7 7

Notional: 10000. Amount invested: 10048. Total (2-way) turnover: 10048.

Now we use TAopt, from the NMOF package, to find the optimal integer portfolio.

require("NMOF")

ediff <- function(x) {

tmp <- x*price/budget - target

sum(tmp*tmp)

}

neighbour <- function(x) {

i <- sample.int(length(x), size = 1L)

x[i] <- x[i] + if (runif (1) > 0.5) - s[i] else s[i]

x

}

sol <- TAopt(ediff ,

algo = list(x0 = numeric(length(price)),

neighbour = neighbour ,

q = 0.1,

nS = 1000,

printBar = FALSE))

Threshold Accepting.

Computing thresholds ... OK.

Estimated remaining running time: 0.23 secs.

Running Threshold Accepting ...

Initial solution: 0.109341

Finished.

Best solution overall: 0.001108741

66

http://enricoschumann.net/NMOF.htm

6.4 Substituting a basket by its components

df <- data.frame(TA = sol$xbest , rounded = s*round(x$target/s))

df[apply(df, 1, function(i) any(i != 0)),]

TA rounded

1 5 5

2 40 40

3 20 20

4 16 16

5 15 15

6 5 5

7 5 5

8 5 5

9 5 5

10 7 7

The difference.

ediff(sol$xbest) - ediff(s*round(x$target/s))

[1] 0

6.4 Substituting a basket by its components

If you run tests with baskets of instruments or whole strategies, you often need to substitute the
components of the basket for overall basket. pmwr provides a function replace_weight that helps
with this task. (It is also helpful if you have hierarchies of benchmarks or want to do a ‘look-
through’ through a subportfolio within your portfolio.)

Suppose we have this weight vector:

w <- c(basket_1 = 0.3,

basket_2 = 0.5,

basket_3 = 0.2)

We also know what the first two baskets represent.

b1 <- c(a = 0.5, b = 0.2, c = 0.3)

b2 <- c(d = 0.1, e = 0.2, a = 0.7)

Now we can call replace_weight.

replace_weight(w,

basket_1 = b1,

basket_2 = b2)

67

6 Rebalancing a portfolio

basket_1::a basket_1::b basket_1::c

0.15 0.06 0.09

basket_2::d basket_2::e basket_2::a

0.05 0.10 0.35

basket_3

0.20

If the names of the baskets or of the things in the baskets have spaces or other characters that
cause trouble, quote them.

replace_weight(c("basket 1" = 0.3,

"basket 2" = 0.7),

"basket 1" = b1,

"basket 2" = b2)

68

7 Analysing portfolio time-series

Often, a portfolio’s analysis is based purely on the portfolio’s price (or NAV or equity) series:
perhaps because more detailed data is not available (e.g. for a fund) or simply because it is more
convenient to abstract from the position level to the NAV level.

To handle such series, pmwr provides the function NAVseries. An NAV series is nothing more than
a time-series: a vector of NAVs, together with a vector of timestamps. Then why not simply use
an existing time-series class, such as zoo? One reason is clarity. A zoo or xts object is much more
general: it may be represent more than one series, and it may represent, for instance, returns. An
NAV series promises to the user that it represents NAVs (i.e. levels) of a single series, nothing
else. Futhermore, defining our own class allows us to define specific methods where appropriate;
yet, at the same time we may piggyback on existing time-series methods by defining methods for
coercion, e.g. as.zoo.NAVseries or as.xts.NAVseries.

This chapter explains the function NAVseries.

24 Jun 2013 ==> 09 Jun 2016 (695 data points , 0 NAs)

50 68.5415

summary(tmp)

24 Jun 2013 ==> 09 Jun 2016 (695 data points , 0 NAs)

50 68.5415

High 80.04 (13 Apr 2015)

Low 50.00 (24 Jun 2013)

Return (%) 11.2 (annualised)

Max. drawdown (%) 23.6

_ peak 80.04 (13 Apr 2015)

_ trough 61.18 (11 Feb 2016)

_ underwater now (%) 14.4

Volatility (%) 13.1 (annualised)

_ upside 10.9

_ downside 7.4

69

7 Analysing portfolio time-series

Monthly returns

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec YTD

2013 3.9 5.3 -1.6 5.4 3.1 1.6 1.2 20.3

2014 -1.5 5.3 -1.0 0.3 2.5 -1.0 -3.1 2.4 0.8 -0.2 4.5 -0.8 8.2

2015 9.3 5.8 2.4 -1.1 1.8 -4.5 4.0 -7.7 -3.5 7.7 2.4 -3.4 12.3

2016 -5.6 -2.8 1.3 -1.1 3.7 -1.7 -6.3

70

8 Plotting irregularly-spaced series during
trading hours

8.1 An example

Wehave the following sample of prices of the Bund future contract, traded at the Eurex inGermany.

times prices
2012-10-18 20:00:09 139.82
2012-10-18 20:01:11 139.82
2012-10-18 20:01:59 139.8
2012-10-18 20:01:29 139.81
2012-10-18 20:16:49 139.77
2012-10-18 20:50:49 139.85
2012-10-18 21:23:19 139.76
2012-10-18 21:41:39 139.76
2012-10-18 21:59:59 139.77
2012-10-19 09:16:10 139.8
2012-10-19 09:49:31 139.86
2012-10-19 21:12:49 140.46
2012-10-19 21:42:31 140.39
2012-10-22 08:45:15 140.14
2012-10-22 09:05:33 140.15

Note that I have left the time zone to the operating system. Since my computer is typically located
in the time zone that the tz database (http://www.iana.org/time-zones) calls ’Europe/Berlin’, the
first time should be 2012-10-18 20:00:09. If, for instance, your computer is in ’America/Chicago’
instead and you run the above code, the first time would be 2012-10-18 13:00:09. Which is right:
it is the correct time, only translated into Chicago local time.

A plot of price against time looks like this.

plot(times , prices , type = "s")

71

http://www.eurexchange.com
http://www.iana.org/time-zones

8 Plotting irregularly-spaced series during trading hours

Fri Sat Sun Mon

13
9.

8
14

0.
0

14
0.

2
14

0.
4

times

pr
ic

es

Such a plot is fine for many purposes. But the contract for which we have prices is only traded
from Monday to Friday, not on weekends, and it istraded only from 08:00 to 22:00 Europe/Berlin
time. So the plot should omit those times at which no trading takes place. This is what the function
plot_trading_hours does.

tmp <- plot_trading_hours(x = prices , t = times ,

interval = "1 sec", labels = "day",

fromHHMMSS = "080000", toHHMMSS = "220000",

type = "s")

72

8.1 An example

13
9.

8
14

0.
0

14
0.

2
14

0.
4

19.10. 22.10.

What we need for such a plot is a function that maps actual time to a point on the x-scale, while
the y-scale stays unchanged. If we were talking only about days, not times, we needed something
like this:

day x-position mapped x-position
Thursday 1 1
Friday 2 2
Saturday 3 <removed>

Sunday 4 <removed>

Monday 5 3

This mapping is what plot_trading_hours provides. And not much more: the design goal of the
function is to make it as much as possible an ordinary plot; or more specifically, to make it as
similar as possible to the plot function. Indeed, plot_trading_hours calls plotwith a small number
of default settings:

list(type = "l", xaxt = "n", xlab = "", ylab = "")

These settings can all be overridden through the ... argument, which is passed to plot. Note that
we already set s as the plot’s type in the last code chunk. The only required setting is suppressing

73

8 Plotting irregularly-spaced series during trading hours

the x-axis with setting xaxt to ’n’, because plot_trading_hours will create its own x-axis via a call
to axis(1, ...). In case you wish to use your own axis specification, either set do.plotAxis to
FALSE or pass settings to axis through the list axis1.par.

8.2 More examples

8.2.1 Value of plot_trading_hours

Like plot, plot_trading_hours is typically called for its side effect: creating a plot. But it also
returns useful information (invisibly, unless called with do.plot = FALSE).

str(tmp)

List of 6

$ t : int [1:15] 1 63 81 111 1001 3041 4991 6091 7191 11763 ...

$ x : num [1:15] 140 140 140 140 140 ...

$ axis.pos : num [1:2] 7193 57594

$ axis.labels: chr [1:2] "19.10." "22.10."

$ timegrid : POSIXct [1:61527] , format: "2012 -10 -18 20:00:09" ...

$ map : function (t)

This information can be used to add elements to plots. An example follows.

8.2.2 Adding grid lines

We can add grid lines with abline. The y-axis poses no special problem. The positions of the x-axis
ticks are returned from plot_trading_hours.

tmp <- plot_trading_hours(x = prices , t = times ,

interval = "1 sec",

labels = "day",

fromHHMMSS="080000",

toHHMMSS = "220000",

type = "s")

abline(h = axTicks (2), v = tmp$axis.pos ,

col = "lightgrey", lty = "dotted")

74

8.2 More examples

13
9.

8
14

0.
0

14
0.

2
14

0.
4

19.10. 22.10.

If we wan to add to a specific time, say 19 October, 13:10:23, we can use the function map that the
call to plot_trading_hours returns. We first create the specific timewith, for example, ISOdatetime
or strptime.

Again , I do not specify a time zone since time zones

depend on the operating system. To reproduce the

example , you may use this representation:

##

mytime <- structure (1350645023 ,

class = c(" POSIXct", "POSIXt"),

tzone = "")

mytime <- ISOdatetime (2012, 10, 19, 13, 10, 23)

mytime

[1] "2012 -10 -19 13:10:23 CEST"

Now we use map to translate this time into the appropriate x-position.

tmp <- plot_trading_hours(x = prices , t = times ,

interval = "1 sec", labels = "day",

75

8 Plotting irregularly-spaced series during trading hours

fromHHMMSS="080000",

toHHMMSS = "220000",

type = "s")

abline(h = axTicks (2), v = tmp$axis.pos ,

col = "lightgrey", lty = "dotted")

abline(v = tmp$map(mytime)$t, col = "red")
13

9.
8

14
0.

0
14

0.
2

14
0.

4

19.10. 22.10.

The function map returns a list with two components, t and ix.

tmp$map(mytime)

$t

[1] 25816

$ix

[1] 1

The first component is the appropriate position on the x-axis; since it is a time it is called t. The
second component gives the subscripts to values that should actually be plotted. As an example,
suppose that we wish to plot points at several prices at 21:00:00 for several days.

76

8.2 More examples

moretimes <- structure(c(1350586800 , 1350673200 , 1350759600) ,

class = c(" POSIXct", "POSIXt"), tzone = "")

##

moretimes <- ISOdatetime (2012, 10, 18:20, 21, 00, 00)

values <- seq(140, 140.20 , length.out = length(moretimes))

data.frame(times = moretimes ,

weekday = format(moretimes , "%A"),

values)

times weekday values

1 2012 -10 -18 21:00:00 Thursday 140.0

2 2012 -10 -19 21:00:00 Friday 140.1

3 2012 -10 -20 21:00:00 Saturday 140.2

But 20 October 2012 falls on a Saturday, and so it does not appear in the plot.

tmp$map(moretimes)

$t

[1] 3592 53993

$ix

[1] 1 2

The values that should be plotted can conveniently be found by using ix.

values[tmp$map(moretimes)$ix]

[1] 140.0 140.1

77

9 Valuation

Computing the value of a position is, in principle, straightforward: multiply the prices of assets
by the numbers of contracts you hold and sum the resulting values.

This immediately leads to three questions:

1. What is the price?

2. What is a contract?

3. Are we allowed to sum?

9.1 Prices

Valuing an instrument canmean using either amarket price or a theoretical price. In the discussion
that follows, I will assume that we already have prices (or net-present values).

79

10 Analysing trades

10.1 Exposure

We have the following trades and times.

amount <- c(1,3,-3,1,-3,1)

time <- c(0,1,3,4,7,12)

The holding period (duration) of these trades can be computed so:

data.frame(position = cumsum(amount)[-length(amount)],

from = time[-length(time)],

to = time[-1L],

duration = diff(time))

position from to duration

1 1 0 1 1

2 4 1 3 2

3 1 3 4 1

4 2 4 7 3

5 -1 7 12 5

We can plot the exposure.

par(bty = "n", mar = c(4, 4, 0, 0), tck = 0.005,

las = 1, ps = 12)

plot(c(time[1], time), cumsum(c(0, amount)),

type = "s", xlab = "time", ylab = "position")

81

10 Analysing trades

0 2 4 6 8 10 12

−1

0

1

2

3

4

time

po
si

tio
n

Thus, we have had a position from time zero to 12 (hours into the trading day, say), but its size var-
ied. The function twExposure (time-weighted exposure) computes the average absolute exposure.

tw_exposure(amount , time)

1.75

To give a simple example: suppose we bought at the open of a trading day and sold at noon. The
average exposure for the day is thus half a contract.

amount <- c(1, -1 , 0)

time <- c(0,0.5,1)

tw_exposure(amount , time)

0.5

10.2 Splitting and rescaling

Suppose we have the following trades and impose a limit that the maximum absolute exposure for
the trader should only be 2.

82

10.2 Splitting and rescaling

t <- 1:6

n <- c(-1,-1,-1,1,1,1)

p <- c(100 ,99 ,98 ,98 ,99 ,100)

limit(n, p, t, lim = 2)

$amount

[1] -1 -1 1 1

$price

[1] 100 99 99 100

$timestamp

[1] 1 2 5 6

Scaling the trades.

scale_to_unity(n)

[1] -0.333 -0.333 -0.333 0.333 0.333 0.333

Closing the trade at once.

close_on_first(n)

[1] -1 -1 -1 3 0 0

83

11 Scaling series

Visual comparisons of time-series are ubiquitous in finance.1 The function scale1 helps with scal-
ing the levels of time-series so that is becomes easier to compare them. It is a generic function,
and PMwR provides methods for numeric vectors/matrices, and for zoo and NAVseries objects.

11.1 Examples

To explain what the function does, we use two very short time-series: the values of the DAX, the
German stock-market index, and the REXP, a German government-bond index, from 2 January
and 8 January 2014 (just 5 days).

dax <- c(9400.04 , 9435.15 , 9428, 9506.2 , 9497.84)

rex <-c(440.5252 , 440.7944 , 441.5456 , 441.8197 , 441.7619)

X <- cbind(dax , rex)

scale1(dax)

[1] 1.00 1.00 1.00 1.01 1.01

It may be more common to scale to a level of 100. We either multiply the whole series by 100, or
use the level argument.

scale1(dax , level = 100)

[1] 100 100 100 101 101

If we give a matrix to scale1, the function scales each column separately.

scale1(X, level = 100)

dax rex

[1,] 100 100

[2,] 100 100

[3,] 100 100

[4,] 101 100

[5,] 101 100

1Transformating or scaling data are a key element of exploratory data analysis in general. See Tukey’s EDA (1977).
TODO: find H. Simon reference on scaling (taking reciprocal value).

85

11 Scaling series

scale1 also works with zoo objects.

(Z <-scale1(zoo(X, as.Date(c("2014 -01 -02", "2014 -01 -03", "2014 -01 -06",

"2014 -01 -07", "2014 -01 -08"))),

level = 100))

dax rex

2014 -01 -02 100 100

2014 -01 -03 100 100

2014 -01 -06 100 100

2014 -01 -07 101 100

2014 -01 -08 101 100

plot(Z, plot.type = "single")

Thu Fri Sat Sun Tue

10
0.

0
10

0.
6

Index

Z

The argument when defines the origin.

scale1(X, when = 3, level = 100)

dax rex

[1,] 99.7 99.8

[2,] 100.1 99.8

86

11.1 Examples

[3,] 100.0 100.0

[4,] 100.8 100.1

[5,] 100.7 100.0

With zoo objects, when should be compatible with the class of the objects index.

scale1(Z, when = as.Date("2014 -01 -07"), level = 100)

dax rex

2014 -01 -02 98.9 99.7

2014 -01 -03 99.3 99.8

2014 -01 -06 99.2 99.9

2014 -01 -07 100.0 100.0

2014 -01 -08 99.9 100.0

when also understands the keyword first.complete, which is actually the default. That is useful
when series have different lengths.

X[1:2, 1] <- NA

X

dax rex

[1,] NA 441

[2,] NA 441

[3,] 9428 442

[4,] 9506 442

[5,] 9498 442

scale1(X, level = 100) ## 'first.complete ' is the default

dax rex

[1,] NA 99.8

[2,] NA 99.8

[3,] 100 100.0

[4,] 101 100.1

[5,] 101 100.0

When the argument centre is TRUE, the daily mean return is subtracted.

scale1(Z, centre = TRUE)

dax rex

2014 -01 -02 1.000 1

2014 -01 -03 1.001 1

2014 -01 -06 0.998 1

2014 -01 -07 1.003 1

2014 -01 -08 1.000 1

87

11 Scaling series

The argument scale takes a standard deviation and scales the returns to that standard deviation.

apply(returns(scale1(Z, scale = 0.02)) , 2, sd)

dax rex

0.02 0.02

This may create fairer comparisons, for instance, between fund prices that exhibit very different
volatilities.

scale1(Z, scale = 0.02)

dax rex

2014 -01 -02 1.00 1.00

2014 -01 -03 1.02 1.02

2014 -01 -06 1.01 1.06

2014 -01 -07 1.05 1.08

2014 -01 -08 1.05 1.08

It should be stressed that centre and scale treat returns, but scale1 expects and returns levels (not
returns).

The zoo method has a further argument that affects returns: inflate.

d <- seq(from = as.Date("2015-1-1"),

to = as.Date("2016-1-1"),

by = "1 day")

z <- zoo(100, d)

head(z)

tail(z)

2015 -01 -01 2015 -01 -02 2015 -01 -03 2015 -01 -04 2015 -01 -05 2015 -01 -06

100 100 100 100 100 100

2015 -12 -27 2015 -12 -28 2015 -12 -29 2015 -12 -30 2015 -12 -31 2016 -01 -01

100 100 100 100 100 100

The argument should be a numeric value: the annual growth rate that is added to (or subtracted
from, when negative) the time series.

head(scale1(z, inflate = 0.02))

tail(scale1(z, inflate = 0.02))

2015 -01 -01 2015 -01 -02 2015 -01 -03 2015 -01 -04 2015 -01 -05 2015 -01 -06

1 1 1 1 1 1

2015 -12 -27 2015 -12 -28 2015 -12 -29 2015 -12 -30 2015 -12 -31 2016 -01 -01

1.02 1.02 1.02 1.02 1.02 1.02

88

11.2 Scaling a series

11.2 Scaling a series

The previous section provided examples of scaling series. In this section, we are going to see how
scale1 does its computations.

Changing volatility (the scale argument) uses the fact that multiplying a random variable X by a
factor b changes its variance to b2 times the original variance. Hence, we first divide by the actual
standard deviation and then multiply by the desired one.

Changing returns is slightly more complicated. Suppose we want to scale the total return of the
series X such that it equals r ∗T .

(1 + r1)(1 + r2)(1 + r3) · · · = 1 + rT (11.1)

There is, clearly, an infinity of possible adjustments that would do the trick. Wemight, for instance,
change X1 or XT so that the desired return is achieved; but then we could go on an change two or
more elements such there total contribution cancels.

But that is probably not what we want. In fact, a reasonable requirement is that the scaling touches
as few of other statistical properties as possible. Adding a constant z to the return in every period
does that. It has the additional advantage that it neither changes linear

(1 + r1 + z)(1 + r2 + z)(1 + r3 + z) · · · = 1 + r ∗T (11.2)

89

12 Other Tools

12.1 Dividend adjustments

The function div_adjust corrects price series for dividends. It is meant as a low-level function and
is implemented to work on numeric vectors. Consider a hypothetical price series x, which goes
ex-dividend at time 3.

x <- c(9.777 , 10.04, 9.207, 9.406)

div <- 0.7

t <- 3

The default for div_adjust is to match the final price.

div_adjust(x, t, div)

[1] 9.086185 9.330603 9.207000 9.406000

If you prefer a correction that matches the first price, set argument backward to FALSE.

div_adjust(x, t, div , backward = FALSE)

[1] 9.77700 10.04000 9.90700 10.12113

12.2 Stocks splits

The function split_adjust handles stock splits. It is implemented to work on numeric vectors.

12.3 Treasuries quotes

US treasury bonds are often quoted in 1/32nds of points. For instance, the price 110'030 would
mean 110+3/32. The function quote32 provides a way to ‘pretty-print’ such prices.

quote32(c("110 -235", "110 -237"))

91

12 Other Tools

110 -23+

110-23¾

Internally, quote32will store the prices as numeric values: the fractions are only used for printing.

as.numeric(quote32(c("110 -235", "110 -237")))

[1] 110.7344 110.7422

12.4 Validating ISINs

An ISIN, which stands for International Securities Identification Number, uniquely identifies a
security.

is_valid_ISIN(c("DE0007236101", ## Siemens

"DE0007236102")) ## last digit changed

[1] TRUE FALSE

92

13 FAQ/ FRC
(Frequently-required computations)

I need to compute P/L between two points in time, for instance between yesterday’s evening close
and now (intraday).

You need the position at t1 and the journal of trades between t1 and t2. Also, you will need
the valuation prices for all instruments at both points in time. Then, you can use pl: see
arguments initial.position and vprice.

I want to compute returns when a portfolio (specified as weights) is rebalanced at specific times.
However, I only have returns for the assets in the portfolio, not prices.

Compute artificial prices, and then use returns: see arguments weights and rebalance.when.

I have a list of trades (bought or sold what, when and at what price) and I need to compute the
profit or loss.

See pl.

I have a list of trades in an instrument and want to plot these trades against the price of the traded
instrument.

I have a signal series (+1, 0, 0, +1, …) and need to transform it into a profit-and-loss series.

I have a list of trades and need to determine the profit-and-loss between two timestamps.

Call the two timestamps t0 and t1. Unless the position was zero at t0 and t1, we can compute
the profit/loss only if we have prices for the positions at these points in time. In case the
position was indeed zero, you can use pl; the transactions are stored in a journal j.

subset(j, timestamp >= t0 & timestamp <=t1)

But even the more general case is not so complicated, after all.

93

13 FAQ/ FRC (Frequently-required computations)

1. Compute the position at t0 and make it a journal j0.

2. Take all transactions at t > t0 and t ≤ t1 and put them into a journal J .

3. Compute the position at t1, and make it a journal J1, but multiply all amounts by −1.

4. Combine J0, J , and J1 and compute the PL.

I need to determine the month-to-date profit-and-loss.

1. compute position on last day of last month

2. make journal from position (add prices)

3. combine with journal since month start

4. use average (avg) on all instruments

btest: I want to print my current P/L in every period.

Use print.info.

btest: I invest in assets that pay accrued interest.

Directly work with the dirty prices. If the signals depend on clean prices, pass them as extra
information and access them with clean_price[Time()]. Alternatively, work with the clean
prices, and use cashflow to add the accrued interest to the cash account.

btest: Can I rebalance more frequently than I compute a signal?

You can, but it does not make sense in the standard setup. That is, no rebalancing will take
place, even if you instruct btest to do so. The reason is that a signal computes a suggested
position (in units of the instrument); once this position has been built up, no more trading is
required. This is even true when using weights: The argument convert.weights is a conve-
nience that converts weights into a suggested position; btest does not store these weights,
only the suggested position.

94

14 Appendix: R and package versions used

R version 3.3.2 (2016 -10 -31)

Platform: x86_64-pc-linux -gnu (64-bit)

Running under: Ubuntu 17.04

locale:

[1] LC_CTYPE=en_US.UTF -8 LC_NUMERIC=C

[3] LC_TIME=de_CH.UTF -8 LC_COLLATE=en_US.UTF -8

[5] LC_MONETARY=de_CH.UTF -8 LC_MESSAGES=en_US.UTF -8

[7] LC_PAPER=de_CH.UTF -8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=de_CH.UTF -8 LC_IDENTIFICATION=C

attached base packages:

[1] stats graphics grDevices utils datasets methods

[7] base

other attached packages:

[1] rbenchmark_1.0.0 zoo_1.8-0 orgutils_0.4-2

[4] PMwR_0.5-2

loaded via a namespace (and not attached):

[1] datetimeutils_0.2-4 parallel_3.3.2 crayon_1.3.2

[4] NMOF_1.1-0 grid_3.3.2 textutils_0.1-8

[7] lattice_0.20 -34

95

Bibliography

[1] Dirk Eddelbuettel. nanotime: Nanosecond-Resolution Time for R. R package version 0.1.0. 2017.
url: https://CRAN.R-project.org/package=nanotime.

[2] Manfred Gilli, DietmarMaringer, and Enrico Schumann.Numerical Methods and Optimization
in Finance. Elsevier/Academic Press, 2011. url: http://nmof.net.

[3] Enrico Schumann.NumericalMethods andOptimization in Finance (NMOF) –Manual (Package
version 1.1-0). 2011–2017. url: http://enricoschumann.net/NMOF.htm#NMOFmanual.

97

https://CRAN.R-project.org/package=nanotime
http://nmof.net
http://enricoschumann.net/NMOF.htm#NMOFmanual

Index

.returns (function), 32

aggregate.journal(method), 18
annualised returns, 36
as.data.frame.journal (method), 18

btest (function), 41
burn-in, 42

datetimeutils (R package), 7
distributed computing, 6

functional programming, 6

inflate (argument to scale1), 88
is_valid_ISIN (function), 92
ISIN, 92

journal
aggregating journals, 18
backtest, 48
combining journals, 12
comparison with dataframe, 9
concatenating journals, 12
definition, 9
print journals (print method), 11
sorting journals, 13
splitting, 16
subsetting, 14

journal (function), 10

lookthrough, 67

nanotime (R package), 12
NAVseries (function), 69
NMOF (R package), 66

Org mode, 5
overnight gap, 72

Packages, see R packages
pl (function), 21
plot_trading_hours (function), 72
position (function), 16
profit/loss

over specific period of time, 27–28
with open trades, 26

quote32 (function), 91

R packages
datetimeutils, 7
nanotime, 12
NMOF, 66
textutils, 7
tsdb, 7
xts, 34

rebalance
a portfolio, 63
during backtest, 45

rebalance (function), 63
replace_weight (function), 67
returns

mtd, 37
ytd, 37
annualised, 36
for calendar period, 34
monthly, 34
time-weighted, 39
when position is rebalanced periodically,

37
yearly, 36

.returns (function), 32
returns (function), 31

scale1 (function), 85
Sweave, 36

99

Index

tapply, 18
textutils (R package), 7
time-weighted exposure, 81
time-weighted returns, 39
timezones, 71, 75
toOrg (function), 26
trading hours, 72
tsdb (R package), 7
tz database, 71

xts (R package), 34

zoo, 32

100

	Introduction
	About PMwR
	Principles
	Small
	Flexible and general
	Functional
	Matching by name
	Vectorisation

	Other packages
	datetimeutils
	textutils
	tsdb

	Keeping track of transactions: journals
	Creating and combining journals
	Selecting transactions
	Computing balances
	Aggregating journal information

	Computing profit and loss
	Simple cases
	Total P/L
	P/L over time

	More-complicated cases

	Computing returns
	Simple returns
	Holding-period returns
	Returns when weights are fixed
	Return contribution
	Returns when there are external cashflows

	Backtesting
	Decisions
	Data structure
	Function arguments
	Available information within functions
	Function arguments

	Examples: A single asset
	A useless first example
	More-useful examples

	Examples: Several assets
	A simple example

	Common tasks
	Remembering an entry price
	Delaying signals
	Specifying when to compute a signal and trade
	Writing a log
	Selecting parameters: calling btest recursively

	Rebalancing a portfolio
	Usage with unnamed vectors
	Usage with named vectors
	Optimisation
	Substituting a basket by its components

	Analysing portfolio time-series
	Plotting irregularly-spaced series during trading hours
	An example
	More examples
	Value of plot_trading_hours
	Adding grid lines

	Valuation
	Prices

	Analysing trades
	Exposure
	Splitting and rescaling

	Scaling series
	Examples
	Scaling a series

	Other Tools
	Dividend adjustments
	Stocks splits
	Treasuries quotes
	Validating ISINs

	FAQ/FRC(Frequently-required computations)
	Appendix: R and package versions used

