
“PMwR” — 2023/10/19 — 8:37 — page 1 — #1

Portfolio Management with R

Enrico Schumann <es@enricoschumann.net>

Package version 0.19.3
19 October 2023

<es@enricoschumann.net>

“PMwR” — 2023/10/19 — 8:37 — page 2 — #2

2

Contents

1 Introduction
About PMwR 5
Principles 6
Other packages 7
Setting up R 8
Typographical conventions 8

2 Keeping track of transactions:
journals
Overview 11
Fields 11
Creating and combining journals 13
Selecting transactions 17
Computing balances 19

Computing positions from
journals 19
Algorithms for computing bal-
ances 22

Aggregating and transforming
journals 23

3 Computing profit and loss
Simple cases 27

Total profit/loss 27
P/L over time 34

More-complicated cases 36

4 Computing returns
Simple returns 37
Holding-period returns 40
Portfolio returns 43
Return contribution 44
External Cashflows 45

5 Backtesting
Decisions 47
Data structure 48
Function arguments 49

Available information within
functions 49
Function arguments 51

Examples: A single asset 52
A useless first example 52
More-useful examples 54

Examples: Several assets 62
A simple example 62

Miscellaneous 63
Handling missing values 63
Distributing backtest computa-
tions 65
Remembering an entry price 66
Delaying signals 66
Specifying when to compute a
signal and trade 66
Writing a log 67
Selecting parameters: calling
btest recursively 67
Time-varying asset universes 69

6 Rebalancing a portfolio
Usage with unnamed vectors 75
Usage with named vectors 77
Usage with positions 77
Constructive methods: An exam-
ple 78
Algorithms 80
Substituting a basket by its compo-
nents 82

“PMwR” — 2023/10/19 — 8:37 — page 3 — #3

3

7 Summarising portfolio time-
series
Creating NAV series 85
Summarising NAV series 86
Drawdowns and Streaks 87

Drawdown 88
Streaks 90

8 Scaling series
Examples 91
Scaling a series: how it works 95

9 Analysing trades
Exposure 97
Splitting and rescaling 99

10 Plotting irregularly-spaced se-
ries during trading hours
An example 101
More examples 103

Value of plot_trading_-
hours 103
Adding grid lines 104

Daily data 106

11 Valuation

Prices 109

12 Other Tools

Dividend adjustments 111

Stocks splits 111

Treasuries quotes 112

Validating security identification
numbers 112

Price tables 113

Trees 113

13 FAQ/ FRC (Frequently-required
computations)

14 Appendix: Classes and data
structures

15 Appendix: Notes for developers

Methods for returns 121

16 Appendix: R and package ver-
sions used

“PMwR” — 2023/10/19 — 8:37 — page 4 — #4

4

“PMwR” — 2023/10/19 — 8:37 — page 5 — #5

1 Introduction

1.1 About PMwR

This book describes how to use the pmwr package. pmwr provides a small set of re-
liable, efficient and convenient tools that help in processing and analysing trade and
portfolio data.

pmwr grew out of various pieces of software that I have written since 2008, first at
the University of Geneva, later during my work at financial firms. The package has
been and still is under active development, but in its current form is has become
fairly stable, notably functions such as btest, returns, journal and position.
(I have written so much code that relies on these functions that I cannot afford to
change them.) Nevertheless, several parts still need some grooming, so I reserve the
right to change them. Any such changes will be announced in the NEWS file (includ-
ing instructions how to adapt exisiting code), and will be reflected in this manual. I
am grateful for comments and suggestions. The book itself is written in Org mode.
The complete tangled code is available from the book’s website.

The pmwr package is on cran; to install the package, simply type

install.packages("PMwR")

in an R session. The development version of the package is available from http:
//enricoschumann.net/R/packages/PMwR/. To get the development version
from within R, use the following command:

install.packages("PMwR",
repos = c('http://enricoschumann.net/R',

getOption('repos')))

The package depends on several other packages, which are automatically obtained
from the same repository and from cran. The package’s source code is also pushed
to public repositories at

5

https://orgmode.org/
http://enricoschumann.net/R/packages/PMwR/manual/PMwR.R
https://cran.r-project.org/package=PMwR
http://enricoschumann.net/R/packages/PMwR/
http://enricoschumann.net/R/packages/PMwR/
https://cran.r-project.org/

“PMwR” — 2023/10/19 — 8:37 — page 6 — #6

6 Chapter 1. Principles

https://git.sr.ht/~enricoschumann/PMwR
and

https://gitlab.com/enricoschumann/PMwR
and

https://github.com/enricoschumann/PMwR.
Recent versions of the package (since 0.3-4, released in 2016) are pure R code and
can be built without any prerequisites except an R installation; older versions con-
tained C code, so you needed to have the necessary tool chain installed (typically by
installing Rtools).

Closer to finance, there is the Ledger project.

1.2 Principles

small The aim of pmwr is to provide a small set of tools.1 This comes at the price:
interfaces might be more complicated, with arguments being overloaded. But
with only few functions, it is easier to remember a function name or to find it
in the first place.

flexible and general pmwr aims to be open to different types of instruments, dif-
ferent timestamps, etc. (In this respect, the zoo package is a rolemodel for how
a package should work: blend well with standard data structures, be idiomatic,
flexible with regards to date/time classes, …)

functional To quote from chapter 1 of K&R: ‘With properly designed functions,
it is possible to ignore how a job is done; knowing what is done is sufficient’.
pmwr emphasizes computations: transforming simple and transparent data
structures into other data structures. In R, a computation means calling a func-
tion. There are many good reasons for using functions.

• clearer code; code is easier to reuse and to maintain

• functions provide a clear view of what is needed for a specific computa-
tion (i.e. the function arguments), and so functions help with parallel/dis-
tributed computing

• it is easier to test functionality

1A great inspiration for ‘smallness’ were the principles behind the tools that make working on a Unix-
type operating system so productive (and so much fun). In particular, that a programme should do one
thing only (but thoroughly). See for instance Raymond (2003) or Gancarz (2003). Another inspiration
came from the Lua language, which I used much in the past. Lua even removed functions to make the
language even smaller.

https://git.sr.ht/~enricoschumann/PMwR
https://gitlab.com/enricoschumann/PMwR
https://github.com/enricoschumann/PMwR
https://cran.r-project.org/bin/windows/Rtools/
https://www.ledger-cli.org/
https://www.lua.org/

“PMwR” — 2023/10/19 — 8:37 — page 7 — #7

7

• because of R’s pass-by-value principle, input data is not changed, which
makes code more reliable

• clean workspace after function call has ended

There are even more advantages, actually; such as the application of tech-
niques such as memoisation.

Computations provided by pmwr do not – for developers: should not – rely
on global options/settings. The exception are functions that are used interac-
tively, which essentially means print methods. (In scripts or methods, cat is
preferred.)

matching by name Whenever possible and intuitive, data should be matched by
name, not by position. This is most natural with vectors that store scalar in-
formation about instruments, such as prices or multipliers. In such cases, data
input is preferred in the form of named vectors. (In other languages, we would
use a hashtable instead of a vector.)

vectorization Functions should do vectorization when it is beneficial in terms of
speed or clarity of code. Likewise, functions should work on matrices directly
(typically columnwise) when it simplifies or speeds up things. Otherwise, ap-
plying the function (i.e. looping) should be left to the user.

An example may clarify this: drawdown (actually in the NMOF package) is in-
ternally computed through cumsum, so it will be fast for a single vector. But for
a matrix of time series, it would need a loop, which will be left to the user. On
the other hand, returns can be computed efficiently for a matrix, so function
returns directly handles matrices of prices.

1.3 Other packages

Several other packages originated from pmwr; initially, much of their code had been
part of pmwr. Most of those packages are on cran as well.

datetimeutils From the DESCRIPTION file: Utilities for handling dates and times,
such as selecting particular days of the week or month, formatting timestamps
as required by RSS feeds, or converting timestamp representations of other
software (such as ’MATLAB’ and ’Excel’) to R. The package is lightweight (no
dependencies, pure R implementations) and relies only on R’s standard classes
to represent dates and times (’Date’ and ’POSIXt’); it aims to provide efficient
implementations, through vectorisation and the use of R’s native numeric rep-
resentations of timestamps where possible.
https://github.com/enricoschumann/datetimeutils
http://enricoschumann.net/R/packages/datetimeutils/

https://cran.r-project.org/package=NMOF
https://cran.r-project.org/
https://github.com/enricoschumann/datetimeutils
http://enricoschumann.net/R/packages/datetimeutils/

“PMwR” — 2023/10/19 — 8:37 — page 8 — #8

8 Chapter 1. Typographical conventions

mailtools Utilities for handling email.
https://github.com/enricoschumann/mailtools
http://enricoschumann.net/R/packages/mailtools/

textutils Utilities for handling character vectors that store human-readable text
(either plain or with markup, such as HTML or LATEX). The package provides,
in particular, functions that help with the preparation of plain-text reports,
e.g. for expanding and aligning strings that form the lines of such reports. The
package also provides generic functions for transforming R objects to HTML
and to plain text.
https://github.com/enricoschumann/textutils
http://enricoschumann.net/R/packages/textutils/

tsdb A terribly-simple data base for numeric time series, written purely in R, so no
external database-software is needed. Series are stored in plain-text files (the
most-portable and enduring file type) in CSV format. Timestamps are encoded
using R’s native numeric representation for ’Date’/’POSIXct’, which makes
them fast to parse, but keeps them accessible with other software. The pack-
age provides tools for saving and updating series in this standardised format,
for retrieving and joining data, for summarising files and directories, and for
coercing series from and to other data types (such as ’zoo’ series).
https://github.com/enricoschumann/textutils/
http://enricoschumann.net/R/packages/textutils

1.4 Setting up R

In this manual, all R output will be presented in English. In case you run R in a dif-
ferent locale, but want to receive messages in English, type this:

Sys.setenv(LANGUAGE = "en")

Or, since R version 4.2:

Sys.setLanguage(lang = "en")

1.5 Typographical conventions

R code is shown in a typewriter font like this.

1+1

The results of a computation are shown as follows:

https://github.com/enricoschumann/mailtools
http://enricoschumann.net/R/packages/mailtools/
https://github.com/enricoschumann/textutils
http://enricoschumann.net/R/packages/textutils/
https://github.com/enricoschumann/textutils/
http://enricoschumann.net/R/packages/textutils

“PMwR” — 2023/10/19 — 8:37 — page 9 — #9

9

[1] 2

Note that R output is marked with a vertical line, so that it can more easily be distin-
guished from the input.

“PMwR” — 2023/10/19 — 8:37 — page 10 — #10

10 Chapter 1. Typographical conventions

“PMwR” — 2023/10/19 — 8:37 — page 11 — #11

2 Keeping track of transactions:
journals

2.1 Overview

The ultimate basis of many financial computations are lists of transactions. pmwr
provides an s3 class journal for handling such lists. A journal is a list of atomic
vectors, to which a class attribute is attached. (Thus, a journal is similar to a data-
frame.1) Such a list is created through the function journal. Methods should not
rely on this list being sorted in any particular way: components of a journal should
always be retrieved by name, never by position. (In this respect a journal differs
from a data-frame, for which we can meaningfully refer to the n-th column.) A jour-
nal’s components, such as amount or timestamp, are called fields in this manual.

The simplicity of the class is intended, because it is meant for interactive analyses.
The user may – and is expected to – dissect the information in a journal at will;
such dissections may include removing the class attribute.

2.2 Fields

What is actually stored in a journal is up to the user. A number of fields are, how-
ever, required for certain operations and so it is recommended that they be present:

amount The notional amount that is transacted. amount is, in a way, the most im-
portant property of a journal. When functions compute statistics from the
journal (the number of transactions, say), they will often look at amount.

1Only similar: a data-frame may contain non-atomic vectors, a.k.a. lists.

11

“PMwR” — 2023/10/19 — 8:37 — page 12 — #12

12 Chapter 2. Fields

timestamp When did the transaction take place? A numeric or character vector;
should be sortable.

price Well, price. Well, there are many types of prices. The price specified in a
journal can be used to compute profit/loss, so the difference between prices
should be proportional to profit/loss for the transactions. Unfortunately, there
are many instruments that are not quoted in transaction prices: Options may
be quoted in implied volatility, say, or bonds in yield. For such instruments,
the net-asset value (nav) should be used.

instrument Description of the financial instrument; typically an identifier, a.k.a.
ticker or symbol. That is, a string or perhaps a number;2 but not a more-complex
object (recall that journals are lists of atomic vectors).

id A transaction identifier, possibly but not necessarily unique.

account Description of the account (a string or perhaps a number).

... other fields. They must be named, as in fees = c(1, 2, 1).

All fields except amount can be missing. Such missing values will be ‘added back’ as
NA with the exception of id and account, which will be NULL. To be clear: amount
could be a vector of only NA values, but it cannot be left out when the journal is cre-
ated. (This will become clearer with the examples below.)

A journal may have no transactions at all in it. In such a case all fields have length
zero, e.g. amount would be numeric(0). Such empty journals can be created by
saying journal() or by coercing a zero-row data-frame to a journal, via a call to
as.journal.

Transactions in a journal may be organised in hierarchies, such as

account => subaccount => subsubaccont => ... => instrument

This is useful and necessary when you have traded an instrument for different ac-
counts, say, or as part of different strategies. Such a hierarchy may be completely
captured in the instrument field, by concatenating account hierarchy and instrument
using a separator pattern such as ::.3 The result would be ‘namespaced’ instruments
such as Pension::Equities::AMZN. Alternatively, part of the hierarchy may be
stored in the account field.
2Numbers have to be converted to character in some situations, for instance when used as names.
3This notation is inspired by the syntax of ledger files. See https://www.ledger-cli.org/ .

https://www.ledger-cli.org/

“PMwR” — 2023/10/19 — 8:37 — page 13 — #13

13

2.3 Creating and combining journals

The function journal creates journal objects. See ?journal for details about the
function and about methods for journal objects. At its very minimum, a journal
must contain amounts of something.

J <- journal(amount = c(1, 2, -2, 3))
J

amount
1 1
2 2
3 -2
4 3

4 transactions

Actually, that is not true. Sometimes it is useful to create an empty journal, one with
no entries at all. You can do so by saying journal(), without any arguments.

journal()

no transactions

To see the current balance, which is nothing more than the sum over all amounts,
you can use position.

position(J)

4

Suppose you wanted to note how many bottles of milk and wine you have stored in
your cellar. Whenever you add to your stock, you have a positive amount; whenever
you retrieve bottles, you have a negative amount. Then, by keeping track of transac-
tions, you do not have to take stock (apart, perhaps, from occasional checking that
you did not miss a transaction), as long as you keep track of what you put into your
cellar and what you take out.

There may be some analyses you can do on flows alone: you may check your drink-
ing habits for patterns, such as slow accumulation of wine, followed by rapid con-
sumption; or the other way around. But typically, you will want to analyse your
transactions later, and then the more information you record about them – when,
what, why, at what price, etc. –, the better. Journals allow you to store such informa-
tion. To show how they are used, let us switch to a financial example.

Suppose you have transacted the following trades.

“PMwR” — 2023/10/19 — 8:37 — page 14 — #14

14 Chapter 2. Creating and combining journals

| timestamp | account | instrument | amount | price | note |
|------------+---------+------------+--------+---------+-------------|
2017-08-01	Pension	AMZN	10	1001.00	
2017-08-01	Pension	MSFT	220	73.10	
2017-07-14	Trading	AMZN	10	1001.50	
2017-07-31	Trading	AMZN	-5	1014.00	take profit
2017-08-15	Trading	AMZN	10	985.50	
2017-10-05	Pension	MSFT	70	74.40	

This table is formatted in Org syntax, and throughout this chapter we will present
trade information in this format. The function org_journal converts such a table
into a journal.

org_journal <-
function(file, text, timestamp.as.Date = TRUE) {

ans <- orgutils::readOrg(text = text)
if (timestamp.as.Date && "timestamp" %in% colnames(ans))

ans$timestamp <- as.Date(ans$timestamp)
ans <- as.journal(ans)
ans

}

We read the table into a journal.

J <- org_journal(text = "
 | timestamp | account | instrument | amount | price | note |
 |------------+---------+------------+--------+---------+-------------|
2017-08-01	Pension	AMZN	10	1001.00	
2017-08-01	Pension	MSFT	220	73.10	
2017-07-14	Trading	AMZN	10	1001.50	
2017-07-31	Trading	AMZN	-5	1014.00	take profit
2017-08-15	Trading	AMZN	10	985.50	
2017-10-05	Pension	MSFT	70	74.40	
 ")
J

instrument timestamp amount price account note
1 AMZN 2017-08-01 10 1001.0 Pension
2 MSFT 2017-08-01 220 73.1 Pension
3 AMZN 2017-07-14 10 1001.5 Trading
4 AMZN 2017-07-31 -5 1014.0 Trading take profit
5 AMZN 2017-08-15 10 985.5 Trading
6 MSFT 2017-10-05 70 74.4 Pension

6 transactions

A print method defines how a journal is displayed. See ?print.journal for de-
tails. In general, you can always get help for methods for generic functions by saying

https://orgmode.org/

“PMwR” — 2023/10/19 — 8:37 — page 15 — #15

15

?<generic_function>.journal, e.g. ?print.journal or ?as.data.frame.jour-
nal.

print(J, max.print = 2, exclude = c("account", "note"))

instrument timestamp amount price
1 AMZN 2017-08-01 10 1001.0
2 MSFT 2017-08-01 220 73.1
[....]

6 transactions

A str method shows the fields in the journal.

str(J)

'journal': 6 transactions
$ instrument: chr [1:6] "AMZN" "MSFT" "AMZN" "AMZN" ...
$ account : chr [1:6] "Pension" "Pension" "Trading" ...
$ timestamp : Date[1:6], format: "2017-08-01" ...
$ amount : int [1:6] 10 220 10 -5 10 70
$ price : num [1:6] 1001 73.1 1001.5 1014 985.5 ...
$ note : chr [1:6] "" "" "" "take profit" ...

You may notice that the output is similar to that of a data.frame or list. That is
because J is a list of atomic vectors, with a class attribute. Essentially, it is little
more than a list of the columns of the above table.

But note that journal would silently have added required fields such price, ini-
tialised as NA.

str(journal(amount = 1))

'journal': 1 transaction
$ instrument: chr NA
$ timestamp : num NA
$ amount : num 1
$ price : num NA

In the example, the timestamps are of class Date. But essentially, any vector of mode
character or numeric can be used, for instance POSIXct, or other classes. Here is an
example that uses the nanotime package (Eddelbuettel, 2017).

library("nanotime")
journal(amount = 1:3, timestamp = nanotime(Sys.time()) + 1:3)

timestamp amount
1 2020-08-09T08:27:19.812951001+00:00 1
2 2020-08-09T08:27:19.812951002+00:00 2

“PMwR” — 2023/10/19 — 8:37 — page 16 — #16

16 Chapter 2. Creating and combining journals

3 2020-08-09T08:27:19.812951003+00:00 3

3 transactions

Journals can be combined with c.

J2 <- J
J2$remark <- rep("new", length(J))
c(J, J2)

instrument timestamp amount price account note remark
1 AMZN 2017-08-01 10 1001.0 Pension <NA>
2 MSFT 2017-08-01 220 73.1 Pension <NA>
3 AMZN 2017-07-14 10 1001.5 Trading <NA>
4 AMZN 2017-07-31 -5 1014.0 Trading take profit <NA>
5 AMZN 2017-08-15 10 985.5 Trading <NA>
6 MSFT 2017-10-05 70 74.4 Pension <NA>
7 AMZN 2017-08-01 10 1001.0 Pension new
8 MSFT 2017-08-01 220 73.1 Pension new
9 AMZN 2017-07-14 10 1001.5 Trading new
10 AMZN 2017-07-31 -5 1014.0 Trading take profit new
11 AMZN 2017-08-15 10 985.5 Trading new
12 MSFT 2017-10-05 70 74.4 Pension new

12 transactions

The new combined journal will not be sorted by date. In general, a journal need not
be sorted in any particular way. There is a sort method for journals, whose default
is to sort by timestamp. We can also sort by other fields, for instance by amount.

sort(c(J, J2), by = c("amount", "price"), decreasing = FALSE)

instrument timestamp amount price account note remark
1 AMZN 2017-07-31 -5 1014.0 Trading take profit <NA>
2 AMZN 2017-07-31 -5 1014.0 Trading take profit new
3 AMZN 2017-08-15 10 985.5 Trading <NA>
4 AMZN 2017-08-15 10 985.5 Trading new
5 AMZN 2017-08-01 10 1001.0 Pension <NA>
6 AMZN 2017-08-01 10 1001.0 Pension new
7 AMZN 2017-07-14 10 1001.5 Trading <NA>
8 AMZN 2017-07-14 10 1001.5 Trading new
9 MSFT 2017-10-05 70 74.4 Pension <NA>
10 MSFT 2017-10-05 70 74.4 Pension new
11 MSFT 2017-08-01 220 73.1 Pension <NA>
12 MSFT 2017-08-01 220 73.1 Pension new

12 transactions

You can query the number of transactions in a journal with length.

“PMwR” — 2023/10/19 — 8:37 — page 17 — #17

17

2.4 Selecting transactions

In an interactive session, you can use subset to select transactions.

subset(J, amount > 10)

instrument timestamp amount price account comment
1 MSFT 2017-08-01 220 73.1 Pension
2 MSFT 2017-10-05 70 74.4 Pension

2 transactions

With subset, you need not quote the expression that selects trades and you can di-
rectly access a journal’s fields. Because of the way subset evaluates its arguments,
it should not be used within functions. (See the Examples section in ?journal for
what can happen then.)

More generally, to extract or change a field, use its name, either through the $ opera-
tor or double brackets [[...]].4

J$amount

[1] 10 220 10 -5 10 70

You can also replace specific fields.

J$comment[1] <- "some note"
J

instrument timestamp amount price account comment
1 AMZN 2017-08-01 10 1001.0 Pension a note
2 MSFT 2017-08-01 220 73.1 Pension
3 AMZN 2017-07-14 10 1001.5 Trading
4 AMZN 2017-07-31 -5 1014.0 Trading take profit
5 AMZN 2017-08-15 10 985.5 Trading
6 MSFT 2017-10-05 70 74.4 Pension

6 transactions

The `[` method works with integers or logicals, returning the respective transac-
tions.

J[2:3]

4The behaviour of ‘[[‘ may change in the future: it may then be used to iterate over the transactions
in a journal, not the fields. This would be motivated by https://developer.r-project.org/
blosxom.cgi/R-devel/NEWS/2016/03/09 even though the commit was reversed two days later
https://developer.r-project.org/blosxom.cgi/R-devel/NEWS/2016/03/11

https://developer.r-project.org/blosxom.cgi/R-devel/NEWS/2016/03/09
https://developer.r-project.org/blosxom.cgi/R-devel/NEWS/2016/03/09
https://developer.r-project.org/blosxom.cgi/R-devel/NEWS/2016/03/11

“PMwR” — 2023/10/19 — 8:37 — page 18 — #18

18 Chapter 2. Selecting transactions

instrument timestamp amount price account comment
1 MSFT 2017-08-01 220 73.1 Pension
2 AMZN 2017-07-14 10 1001.5 Trading

2 transactions

J[J$amount < 0]

instrument timestamp amount price account comment
1 AMZN 2017-07-31 -5 1014 Trading take profit

1 transaction

You can also pass a string, which is then interpreted as a regular expression that is
matched against all character fields in the journal.

J["Pension"]

instrument timestamp amount price account comment
1 AMZN 2017-08-01 10 1001.0 Pension a note
2 MSFT 2017-08-01 220 73.1 Pension
3 MSFT 2017-10-05 70 74.4 Pension

3 transactions

You can also specify the fields to match the string against.

J["Pension", match.against = "instrument"]

no transactions

By default, case is ignored, but you can set ignore.case to FALSE. (Also supported
are arguments fixed, perl and useBytes, to be passed to grepl, with default
FALSE.)

J["pension", ignore.case = FALSE]

no transactions

Finally, you can invert the selection with invert.

J["Pension", invert = TRUE]

instrument timestamp amount price account comment
1 AMZN 2017-07-14 10 1001.5 Trading
2 AMZN 2017-07-31 -5 1014.0 Trading take profit
3 AMZN 2017-08-15 10 985.5 Trading

3 transactions

“PMwR” — 2023/10/19 — 8:37 — page 19 — #19

19

2.5 Computing balances

2.5.1 Computing positions from journals

The function position gives the current balance of all instruments.

position(J)

2017-10-05
AMZN 25
MSFT 290

To get the position at a specific date, use the when argument.

position(J, when = as.Date("2017-08-10"))

2017-08-10
AMZN 15
MSFT 220

If you do not like such a tabular view, consider splitting the journal.

lapply(split(J, J$instrument),
position, when = as.Date("2017-08-10"))

$AMZN
2017-08-10

AMZN 15

$MSFT
2017-08-10

MSFT 220

The split method breaks up a journal according to a ‘factor‘ (here, the instrument
field) into a list of journals. This is often useful in interactive sessions, to have infor-
mation per sub-journal printed.

split(J, J$instrument)

$AMZN
instrument timestamp amount price account note

1 AMZN 2017-08-01 10 1001.0 Pension
2 AMZN 2017-07-14 10 1001.5 Trading
3 AMZN 2017-07-31 -5 1014.0 Trading take profit
4 AMZN 2017-08-15 10 985.5 Trading

4 transactions

“PMwR” — 2023/10/19 — 8:37 — page 20 — #20

20 Chapter 2. Computing balances

$MSFT
instrument timestamp amount price account note

1 MSFT 2017-08-01 220 73.1 Pension
2 MSFT 2017-10-05 70 74.4 Pension

2 transactions

To get a time series of positions, you can use specific keywords for when: all will
print the position at all timestamps in the journal.

position(J, when = "all")

AMZN MSFT
2017-08-01 15 220
2017-07-14 10 0
2017-07-31 5 0
2017-08-15 25 220
2017-10-05 25 290

Keywords first and last give you the first and last position. (The latter is the
default; so if when is not specified at all, the last position is computed.) endofday
computes the positions at the ends of calendar days in the journal. endofmonth and
endofyear print the positions at the ends of all calendar months and years between
the first and the last timestamp. (The function nth_day in package datetimeutils
offers more options.)

We are not limited to the timestamps that exist in the journal.

position(J, when = seq(from = as.Date("2017-07-10"),
to = as.Date("2017-07-20"),
by = "1 day"))

AMZN MSFT
2017-07-10 0 0
2017-07-11 0 0
2017-07-12 0 0
2017-07-13 0 0
2017-07-14 10 0
2017-07-15 10 0
2017-07-16 10 0
2017-07-17 10 0
2017-07-18 10 0
2017-07-19 10 0
2017-07-20 10 0

By default, position will show you positions of all instruments, even if they are zero.

position(J, when = as.Date("2017-7-15"))

“PMwR” — 2023/10/19 — 8:37 — page 21 — #21

21

2017-07-15
AMZN 10
MSFT 0

You can suppress such positions with drop.zero.

position(J, when = as.Date("2017-7-15"), drop.zero = TRUE)

2017-07-15
AMZN 10

drop.zero can also be a numeric value, in which case is it interpreted as an absolute
tolerance. This is useful in cases such as this one:

position(journal(instrument = "USD",
timestamp = as.Date("2012-01-05"),
amount = c(0.1, 0.1, 0.1, -0.3)),

drop.zero = TRUE)

2012-01-05
USD 2.7756e-17

position(journal(instrument = "USD",
timestamp = as.Date("2012-01-05"),
amount = c(0.1, 0.1, 0.1, -0.3)),

drop.zero = 1e-12)

(Note that there is no output.)

As a final example, when accounts are specified, we may also aggregate positions by
account.

position(J, use.account = TRUE)

Pension
|-- AMZN 10
`-- MSFT 290
Trading
`-- AMZN 15

As described above, each instruments gets its ‘namespace’.

as.data.frame(position(J, use.account = TRUE))

Pension.AMZN Pension.MSFT Trading.AMZN
2017-10-05 10 290 15

“PMwR” — 2023/10/19 — 8:37 — page 22 — #22

22 Chapter 2. Computing balances

2.5.2 Algorithms for computing balances

We have three vectors: when, timestamp and amount. Vectors when and timestamp
are of the same type and are both sorted in increasing order; timestamp and amount
have the same length. The result of the computation is a vector position with the
same length as when.

i, j = 0 /* i loops over when; j loops over amount/timestamp */
for (i = 0; i < length(when); i++) {

if (i == 0)
pos[i] = 0;

else
pos[i] = pos[i - 1];

while (timestamp[j] <= when[i] && j < length(j))
position[i] += amount[j++];

}

Below follow two Perl snippets that compute positions from list of trades. (Perl syn-
tax is similar to C syntax; in particular, array indices start at 0. This makes Perl very
useful to test algorithms that are later to be coded in C.)

when and timestamp sorted

use warnings;
use strict;
use v5.14;

my @when = (0,1,2,7); ## when to compute position
my @timestamp = (0,0,0,2); ## timestamps of trades
my @amount = (1,1,1,-2); ## traded amounts

when and timestamp sorted
my @pos = (0) x @when; ## same length as @when
my $i = 0;
my $j = 0;

/* i loops over when; j loops over amount/timestamp */
for ($i = 0; $i < @when; $i++) {

if ($i == 0) {
$pos[$i] = 0;

} else {
$pos[$i] = $pos[$i - 1];

}
while ($j < @amount && $timestamp[$j] <= $when[$i]) {

“PMwR” — 2023/10/19 — 8:37 — page 23 — #23

23

$pos[$i] += $amount[$j];
$j += 1;

}
}
say "@pos";

3 3 1 1

when and timestamp unsorted

use warnings;
use strict;
use v5.14;

my @when = (0,1,2,7); ## when to compute position
my @timestamp = (0,0,0,2); ## timestamps of trades
my @amount = (1,1,1,-2); ## traded amounts

my @pos = (0) x @when; ## same length as @when
my $i = 0;
my $j = 0;
@pos = (0,0);
for ($i = 0; $i < @when; $i++) {

for ($j = 0; $j < @timestamp; $j++) {
if ($timestamp[$j] <= $when[$i]) {

$pos[$i] += $amount[$j];
}

}
}
say "@pos";

3 3 1 1

2.6 Aggregating and transforming journals

Often the data provided by journals needs to be processed in some way. A straight-
forward strategy is to call as.data.frame on the journal and then to use one of the
many functions and methods that can be used for data-frames, such as aggregate
or apply.

Even without coercion to a data-frame: A journal is a list of atomic vectors and
hence already very similar to a data-frame. As a consequence, many computations

“PMwR” — 2023/10/19 — 8:37 — page 24 — #24

24 Chapter 2. Aggregating and transforming journals

can also be done directly on the journal, in particular with tapply. An example: you
have a journal trades and want to compute monthly turnover (two-way). If there is
only one instrument or all instruments may be added without harm (typically when
they are denominated in the same currency), you can use this expression:

tapply(trades,
INDEX = format(trades$timestamp , "%Y-%m"),
FUN = function(x) sum(abs(x$amount)))

To break it down by instrument, just add instrument as a second grouping variable
to the INDEX argument.

tapply(trades,
INDEX = list(format(trades$timestamp , "%Y-%m"),

trades$instrument),
FUN = function(x) sum(abs(x$amount)))

A special case is when a journal is to be processed into a new journal. For this, pmwr
defines an aggregate method for journals:

aggregate.journal(x, by, FUN, ...)

The method splits the journal according to the grouping argument by, which can be
a list (as in the default method) or an atomic vector. The argument FUN can either
be a function or list. If a function, it should receive a journal and also evaluate to a
journal. (Note that this is different from R’s aggregate.data.frame, which calls
FUN on all columns, but in turn cannot address specific columns of the data.frame.)
If FUN is a list, its elements should be named functions. The names should match
fields in the journal.

An example: we have a journal covering two trading days and wish to create a sum-
mary journal, which aggregates buys and sells for every day.

J <- org_journal(text = "
 | instrument | timestamp | amount | price |
 |------------+----------------+--------+-------|
A	2013-09-02 Mon	-3	102
B	2013-09-02 Mon	-3	104
B	2013-09-02 Mon	3	106
B	2013-09-02 Mon	-2	104
A	2013-09-03 Tue	-1	110
A	2013-09-03 Tue	1	104
A	2013-09-03 Tue	5	108
A	2013-09-03 Tue	3	107
B	2013-09-03 Tue	-4	102
B	2013-09-03 Tue	3	106
")

“PMwR” — 2023/10/19 — 8:37 — page 25 — #25

25

fun <- function(x) {
journal(timestamp = as.Date(x$timestamp[1]),

amount = sum(x$amount),
price = sum(x$amount*x$price)/sum(x$amount),
instrument = x$instrument[1L])

}

aggregate(J,
by = list(J$instrument ,

sign(J$amount),
as.Date(J$timestamp)),

FUN = fun)

The results is a journal, but with at most a single buy or sell transaction per instru-
ment per day: see the buy transaction for instrument A on September, 3.

instrument timestamp amount price
1 A 2013-09-02 -3 102.0000
2 B 2013-09-02 -5 104.0000
3 B 2013-09-02 3 106.0000
4 A 2013-09-03 -1 110.0000
5 B 2013-09-03 -4 102.0000
6 A 2013-09-03 9 107.2222
7 B 2013-09-03 3 106.0000

7 transactions

“PMwR” — 2023/10/19 — 8:37 — page 26 — #26

26 Chapter 2. Aggregating and transforming journals

“PMwR” — 2023/10/19 — 8:37 — page 27 — #27

3 Computing profit and loss

In this chapter we will deal with computing profit and loss (P/L) measured in amounts
of currency. If you are interested in computing returns, see Section Computing re-
turns.

3.1 Simple cases

3.1.1 Total profit/loss

We buy one unit of an asset at a price of 100 euro and we sell it for 101. We have
made a profit of 1 euro.

This simple case is frequent enough that we should make the required computation
simple as well. The pmwr package provides a function pl, which for this case may
be called as follows.

pl(price = c(100, 101),
amount = c(1, -1))

P/L total 1
average buy 100
average sell 101
cum. volume 2‘

P/L ’total is in units of instrument;‘’
volume is sum of /absolute/ amounts.

Instead of a vectors price and amount, you could also have passed a journal to pl.

In principle, profit/loss (P/L) is straightforward to compute. Let 𝑥 be a vector of the
absolute amounts traded, and let 𝑝 be a vector of the prices at which we traded.

27

“PMwR” — 2023/10/19 — 8:37 — page 28 — #28

28 Chapter 3. Simple cases

Then P/L is just the difference between what we received when selling and what
we paid when buying.

∑𝑥sell𝑖 𝑝sell𝑖 −∑𝑥buy𝑖 𝑝buy𝑖 (3.1)

This can be simplified when we impose the convention that sold amounts are nega-
tive.

P/L = −∑
𝑥<0

𝑥𝑖𝑝𝑖 − ∑
𝑥>0

𝑥𝑖𝑝𝑖 (3.2)

= −∑𝑥𝑖𝑝𝑖 (3.3)

The function pl also expects this convention: in the code example we had 𝑥 =
[1, −1]′.

There are several ways to perform this basic (or fundamental, rather) computation.
Here are some, along with some timing results.

amount <- rep(c(-100, 100), 500)
price <- rep(100, length(amount))

library("rbenchmark")
benchmark(

variations
amount %*% price,
sum(amount*price),
crossprod(amount, price),
t(amount*price) %*% rep(1, length(amount)), ## matrix summing

settings
columns = c("test", "elapsed", "relative"),
order = "relative",
replications = 50000)

test elapsed relative
1 amount %*% price 0.126 1.000
3 crossprod(amount, price) 0.138 1.095
2 sum(amount * price) 0.172 1.365
4 t(amount * price) %*% rep(1, length(amount)) 0.440 3.492

pl uses the straightforward sum(amount * price) variant; only when very long
vectors are used, it switches to crossprod.

pl also accepts an argument instrument: if it is available, pl computes and reports
P/L for each instrument separately. As an example, suppose you traded shares of
two German companies, Adidas and Commerzbank. We collect the transactions in a
journal.

“PMwR” — 2023/10/19 — 8:37 — page 29 — #29

29

J <- readOrg(text = "
| instrument | amount | price |
|-------------+--------+-------|
Adidas	50	100
Adidas	-50	102
Commerzbank	500	8
Commerzbank	-500	7
")
J <- as.journal(J)
J

instrument amount price
1 Adidas 50 100
2 Adidas -50 102
3 Commerzbank 500 8
4 Commerzbank -500 7

4 transactions

We now pass the journal directly to pl.

pl(J)

Adidas
P/L total 100
average buy 100
average sell 102
cum. volume 100

Commerzbank
P/L total -500
average buy 8
average sell 7
cum. volume 1000‘

P/L ’total is in units of instrument;‘’
volume is sum of /absolute/ amounts.

An aside: since the shares are denominated in the same currency (euro), total profit
is the same even if we had left out the instruments; however, average buying and
selling prices becomes less informative.

Financial instruments differ not only in the currencies in which they are denomi-
nated. Many derivatives have multipliers, which you may also specify. Suppose you
have traded FGBL (German Bund futures) and FESX (EURO STOXX 50 futures). One
point of the FGBL translates into 1000 euros; for the FESX it is 10 euros.

J <- readOrg(text = "

“PMwR” — 2023/10/19 — 8:37 — page 30 — #30

30 Chapter 3. Simple cases

| instrument | amount | price |
|-------------+--------+--------|
FGBL MAR 16	1	165.20
FGBL MAR 16	-1	165.37
FGBL JUN 16	1	164.12
FGBL JUN 16	-1	164.13
FESX JUN 16	5	2910
FESX JUN 16	-5	2905
")

J <- as.journal(J)
futures_pl <- pl(J,

multiplier = c("^FGBL" = 1000, "^FESX" = 10),
multiplier.regexp = TRUE)

futures_pl

FESX JUN 16
P/L total -250
average buy 2910
average sell 2905
cum. volume 10

FGBL JUN 16
P/L total 10
average buy 164.12
average sell 164.13
cum. volume 2

FGBL MAR 16
P/L total 170
average buy 165.2
average sell 165.37
cum. volume 2‘

P/L ’total is in units of instrument;‘’
volume is sum of /absolute/ amounts.

Note that we used a named vector to pass the multipliers. Per default, the names of
this vector need to exactly match the instruments’ names. Setting multiplier.reg-
exp to TRUE causes the names of the multiplier vector to be interpreted as (Perl-
style) regular expressions.

At this point, it may be helpful to describe how we can access the results of such P/L
computations (other than having them printed to the console, that is). The function
pl always returns a list of lists – one list for each instrument.

str(futures_pl)

“PMwR” — 2023/10/19 — 8:37 — page 31 — #31

31

List of 3
$ FESX JUN 16:List of 6
..$ pl : num -250
..$ realised : logi NA
..$ unrealised: logi NA
..$ buy : num 2910
..$ sell : num 2905
..$ volume : num 10

$ FGBL JUN 16:List of 6
..$ pl : num 10
..$ realised : logi NA
..$ unrealised: logi NA
..$ buy : num 164
..$ sell : num 164
..$ volume : num 2

$ FGBL MAR 16:List of 6
..$ pl : num 170
..$ realised : logi NA
..$ unrealised: logi NA
..$ buy : num 165
..$ sell : num 165
..$ volume : num 2

- attr(*, "class")= chr "pl"
- attr(*, "along.timestamp")= logi FALSE
- attr(*, "instrument")= chr [1:3] "FESX JUN 16" "FGBL JUN 16" "FGBL MAR 16"

Each such list contains numeric vectors: ‘pl’, ’realised’, ’unrealised’, ’buy’, ’sell’,
’volume’. There may also be an additional vector, timestamp, to be described later
in Section PL over time. The vectors ’realised’ and ’unrealised’ will be NA unless
along.timestamp is not FALSE, also described in Section PL over time. Data can
be extracted by standard methods.

unlist(futures_pl[["FESX JUN 16"]])

pl realised unrealised buy sell volume
-250 NA NA 2910 2905 10

unlist(lapply(futures_pl, `[[`, "volume"))

FESX JUN 16 FGBL JUN 16 FGBL MAR 16
10 2 2

You may prefer sapply(...) instead of unlist(lapply(...)). Also, extracting
the raw P/L numbers of each instrument is so common that you can say pl(pl(...)).
So you could have written:

pl(pl(J,
multiplier = c("FGBL" = 1000, "FESX" = 10),
multiplier.regexp = TRUE))

“PMwR” — 2023/10/19 — 8:37 — page 32 — #32

32 Chapter 3. Simple cases

FESX JUN 16 FGBL JUN 16 FGBL MAR 16
-250 10 170

It is often more convenient to have the data presented as a table, which we can cre-
ate with as.data.frame.

as.data.frame(futures_pl)

pl buy sell volume
FESX JUN 16 -250 2910.00 2905.00 10
FGBL JUN 16 10 164.12 164.13 2
FGBL MAR 16 170 165.20 165.37 2

Or if you like ASCII tables, with toOrg.

toOrg(as.data.frame(futures_pl), row.names = "instrument")

| instrument | pl | buy | sell | volume |
|-------------+------+--------+--------+--------|
FESX JUN 16	-250	2910	2905	10
FGBL JUN 16	10	164.12	164.13	2
FGBL MAR 16	170	165.2	165.37	2

We can also use pl when there are open positions. The simplest example is a journal
of just one trade.

pl(amount = 1, price = 100)

P/L total NA
average buy 100
average sell NaN
cum. volume 1‘

P/L ’total is in units of instrument;‘’
volume is sum of /absolute/ amounts.‘
sum(amount’) is not zero: specify ‘’vprice to compute P/L.

There can be no P/L number since the position is not closed. But the message that is
shown tells us what to do: we need to specify a price at which the open position is to
be valued. This valuation price is passed as argument vprice (v as in valuation).

pl(amount = 1, price = 100, vprice = 105)

P/L total 5
average buy 100
average sell 105
cum. volume 1

'P/L total' is in units of instrument;
'volume' is sum of /absolute/ amounts.
average sell includes 'vprice'

“PMwR” — 2023/10/19 — 8:37 — page 33 — #33

33

Note that average sell takes into account the valuation price that we specified.1

But cum. volume has remained 1 since only 1 unit was actually traded.

A common task is to compute P/L over a specified period of time such as one trading
day. The procedure for such a case requires three ingredients:

1. the initial position and its valuation prices,

2. the trades during the period,

3. the final position and its prices.

Suppose yesterday, at market close, we had the following positions.

yesterday_position <- c("FESX JUN 16" = -20, "FGBL JUN 16" = 10)
yesterday_prices <- c("FESX JUN 16" = 2912, "FGBL JUN 16" = 164.23)

Note that, as with the multipliers above, we use named vectors for both the position
and the prices: the names indicate the instruments.

Trading just ended, and we have done the following trades.

J

instrument amount price
1 FGBL MAR 16 1 165.20
2 FGBL MAR 16 -1 165.37
3 FGBL JUN 16 1 164.12
4 FGBL JUN 16 -1 164.13
5 FESX JUN 16 5 2910.00
6 FESX JUN 16 -5 2905.00

6 transactions

Now we pass the three ingredients – initial position, trades during the period, and
valuation prices for the final, open positions – to pl.

pl(J,
initial.position = yesterday_position ,
initial.price = yesterday_prices,
vprice = c("FESX JUN 16" = 2902, "FGBL JUN 16" = 164.60),
multiplier = c("FGBL" = 1000, "FESX" = 10),
multiplier.regexp = TRUE)

1In an earlier version of the code, average buy/sell price did not take into account vprice. But specifying
vprice creates a fiction, anyway (P/L ’as if’ the trade was closed), and this fiction is more informative if
the average buy/sell price is adjusted.

“PMwR” — 2023/10/19 — 8:37 — page 34 — #34

34 Chapter 3. Simple cases

FESX JUN 16
P/L total 1750
average buy 2903.6
average sell 2910.6
cum. volume 10

FGBL JUN 16
P/L total 3710
average buy 164.22
average sell 164.56
cum. volume 2

FGBL MAR 16
P/L total 170
average buy 165.2
average sell 165.37
cum. volume 2‘

P/L ’total is in units of instrument;‘’
volume is sum of /absolute/ amounts.
for FESX JUN 16: average buy includes ‘’vprice
for FGBL JUN 16: average sell includes ‘’vprice

An aside: we could have simulated this computation by creating one journal of the
initial position and another journal (with reversed amount signs) for the final posi-
tion, merging all three journals and then computing P/L.

3.1.2 P/L over time

In the examples above, we computed total P/L. It is also illuminating to see how P/L
evolved over time. Suppose that a stock trader bought one share at 50, one share at
90 and sold two shares at 100. These trades resulted in a profit of 60, or an average
return of more than +40% (bought at an average price of 70, and sold at 100).

J <- journal(price = c(90, 50, 100),
amount = c(1, 1, -2))

pl(J)

P/L total 60
average buy 70
average sell 100
cum. volume 4

'P/L total' is in units of instrument;
'volume' is sum of /absolute/ amounts.

“PMwR” — 2023/10/19 — 8:37 — page 35 — #35

35

That may appear like some pretty good trading. Yet suppose that the order of the
trades was

buy at 90 => buy at 50 => sell at 100.

You may have noticed that the journal that we created above already has the trades
ordered this way. We may not know what was traded and when, but there is clearly
some information in the order of the trades and the drawdown that it implies: namely
a mark-to-market loss of at least 40 before it recovered. For situations like this, the
argument along.timestamp can be used.

pl(J, along.timestamp = TRUE)

timestamp 1 2 3
P/L total 0 -40 60
__ realised 0 0 60
__ unrealised 0 -40 0
average buy 70
average sell 100
cum. volume 1 2 4

'P/L total' is in units of instrument;
'volume' is sum of /absolute/ amounts.

Note that we do not provide an actual timestamp, in which case the function uses
integers 1, 2, …, length(J). With no further arguments, as here, the function com-
putes the running position and evaluates it at every trade with the trade’s price. This
may not be totally accurate because of bid–ask spreads or other transaction costs.
But it provides more information than only computing the aggregate P/L for the
trades.

str(pl(J, along.timestamp = TRUE))

List of 1
$:List of 7
..$ timestamp : int [1:3] 1 2 3
..$ pl : num [1:3] 0 -40 60
..$ realised : num [1:3] 0 0 60
..$ unrealised: num [1:3] 0 -40 0
..$ buy : num 70
..$ sell : num 100
..$ volume : num [1:3] 1 2 4

- attr(*, "class")= chr "pl"
- attr(*, "along.timestamp")= logi TRUE
- attr(*, "instrument")= logi NA

As described above, pl object is a list of lists: one list for each instrument. But now
the components pl, realised and so on actually hold time-series, with the times
given by timestamp.

“PMwR” — 2023/10/19 — 8:37 — page 36 — #36

36 Chapter 3. More-complicated cases

In the previous section, we used vprice to value a final open position. We can also
use it to value a position over time. See Profit/Loss for Open Positions, and this ex-
ample on quant.stackexchange.com.

3.2 More-complicated cases

Unfortunately, in real life computing P/L is often more complicated:

• One asset-price unit may not translate into one currency unit: there may be
multipliers a.k.a. contract factors; there are even instruments with variable
multipliers, e.g. Australian government-bond futures.

• Asset positions may map into cashflows in non-obvious ways. The simple case
is the delay in actual payment and delivery of an asset, which is often two or
three days. The more problematic cases are derivatives with daily adjustments
of margins. In such cases, one may need to model (i.e. keep track of) the actual
account balances.

• Assets may be denominated in various currencies.

• Currencies themselves may be assets in the portfolio. Depending on how they
are traded (cash, forwards, &c.), computing P/L may not be straightforward.

How – or, rather, to what degree – these complications are handled is, as always, up
to the user. For a single instrument, computing P/L in units of the instrument is usu-
ally meaningful, though perhaps not always intuitive. But adding up the profits and
losses of several assets will in general not work because of multipliers or different
currencies. A simple and transparent way is then to manipulate the journal before
P/L is computed (e.g., multiply notionals by their multipliers).

https://cran.r-project.org/package=PMwR/vignettes/pl_open_positions.pdf
https://quant.stackexchange.com/questions/36505/calculate-day-to-day-change-in-value-of-open-position/36517#36517
https://quant.stackexchange.com/questions/36505/calculate-day-to-day-change-in-value-of-open-position/36517#36517

“PMwR” — 2023/10/19 — 8:37 — page 37 — #37

4 Computing returns

4.1 Simple returns

The function returns computes returns from prices. The function computes what
are called simple or discrete returns:1 let 𝑃𝑡 be the price at point in time 𝑡, then

𝑟𝑡 ≡ 𝑅𝑡 − 1 =
𝑃𝑡
𝑃𝑡−1

− 1 =
𝑃𝑡 − 𝑃𝑡−1
𝑃𝑡−1

. (4.1)

For computing profit/loss in currency units, see Section Computing profit and (or)
loss.

Typically, we transform a whole series 𝑃𝑡1 , 𝑃𝑡2 , 𝑃𝑡3 , … into returns 𝑅𝑡2 , 𝑅𝑡3 , …, which is a
one-liner in R:

simple_returns <- function(x)
x[-1L]/x[-length(x)] - 1

(You may argue that these are two lines: yet even a one-liner, if used repeatedly,
should be written as a function.)

Let us try it. pmwr comes with two small datasets, DAX and REXP. DAX stands for
Deutscher Aktienindex (German Equity Index), and REXP stands for Rentenindex (Per-
formance). Both datasets are data-frames of one column that contains the price for
the day, with the timestamps stored as rownames in format YYYY-MM-DD.

head(DAX)

DAX
2014-01-02 9400.04
2014-01-03 9435.15
2014-01-06 9428.00
2014-01-07 9506.20
2014-01-08 9497.84
2014-01-09 9421.61

1The function never computes logarithmic returns.

37

“PMwR” — 2023/10/19 — 8:37 — page 38 — #38

38 Chapter 4. Simple returns

We extract the prices for the first five business days of 2014 and put them into a vec-
tor P.

P <- head(DAX[[1]], n = 5)
P

[1] 9400.04 9435.15 9428.00 9506.20 9497.84

Now we call simple_returns.

simple_returns(P)

[1] 0.00373509 -0.00075780 0.00829444 -0.00087943

In fact, using returns as provided by pmwr would have given the same result.

returns(P)

[1] 0.00373509 -0.00075780 0.00829444 -0.00087943

pmwr’s returns function offers more convenience than simple_returns. For in-
stance, it will recognise when the input argument has several columns, such as a
matrix or a data-frame. In such a case, it computes returns for each column.2

returns(cbind(P, P))

P P
[1,] 0.003735 0.003735
[2,] -0.000758 -0.000758
[3,] 0.008294 0.008294
[4,] -0.000879 -0.000879

The argument pad determines how the initial observation is handled. The default,
NULL, means that the first observation is dropped. It is often useful to use NA instead,
since in this way the returns series keeps the same length as the original price series.

data.frame(price = P, returns = returns(P, pad = NA))

price returns
1 9400.0 NA
2 9435.1 0.00373509
3 9428.0 -0.00075780
4 9506.2 0.00829444
5 9497.8 -0.00087943

Setting pad to 0 can also be useful, because then it is easy to ’rebuild’ the original
series with cumprod. (But see Section Scaling series for a description of the function
scale1, which is even more convenient.)
2See Vectorization.

“PMwR” — 2023/10/19 — 8:37 — page 39 — #39

39

P[1] * cumprod(1 + returns(P, pad = 0))

[1] 9400.04 9435.15 9428.00 9506.20 9497.84

returns also has an argument lag, with default 1. This can be used to compute lag
rolling returns, such as 30-day returns, etc.

returns is a generic function, which goes along with some overhead. If you need
to compute returns on simple data structures as in the examples above and need fast
computation, then you may also use .returns. The function is the actual workhorse .returns
that performs the raw return calculation.

Besides having methods for numeric vectors (which includes those with a dim at-
tribute, i.e. matrices) and data-frames, returns also understands zoo objects. So let
us create two zoo series, dax and rex.

library("zoo")
dax <- zoo(DAX[[1]], as.Date(row.names(DAX)))
rex <- zoo(REXP[[1]], as.Date(row.names(REXP)))

str(dax)

'zoo' series from 2014-01-02 to 2015-12-30
Data: num [1:505] 9400 9435 9428 9506 9498 ...
Index: Date[1:505], format: "2014-01-02" "2014-01-03" ...

str(rex)

'zoo' series from 2014-01-02 to 2015-12-30
Data: num [1:502] 441 441 442 442 442 ...
Index: Date[1:502], format: "2014-01-02" "2014-01-03" ...

returns(head(dax, 5), pad = NA)

2014-01-02 2014-01-03 2014-01-06 2014-01-07 2014-01-08
NA 0.003735 -0.000758 0.008294 -0.000879

Matrices work as well. We combine both series into a two-column matrix drax.3

drax <- cbind(dax, rex)
returns(head(drax, 5))

dax rex
2014-01-03 0.003735 0.000611
2014-01-06 -0.000758 0.001704
2014-01-07 0.008294 0.000621
2014-01-08 -0.000879 -0.000131

3In case you did not know: drax is not only the name of a dataset in this book, but also the name of
Marvel-comics superhero and of the villain of a James Bond novel. The latter is actually German, which
makes it obvious to choose the name for representing German indices. :-)

“PMwR” — 2023/10/19 — 8:37 — page 40 — #40

40 Chapter 4. Holding-period returns

As you see, just as for a numeric matrix, the function computes the returns for each
column.

In fact, zoo objects bring another piece of information – timestamps – that returns
can use. (Since xts series inherit from zoo, they will work as well.)

4.2 Holding-period returns

When a timestamp is available, returns can compute returns for specific calendar
periods. As an example, we use the daily DAX levels in 2014 and 2015 and compute
monthly returns from them.

returns(dax, period = "month")

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec YTD
2014 -1.0 4.1 -1.4 0.5 3.5 -1.1 -4.3 0.7 0.0 -1.6 7.0 -1.8 4.3
2015 9.1 6.6 5.0 -4.3 -0.4 -4.1 3.3 -9.3 -5.8 12.3 4.9 -5.6 9.6

If you prefer to not use zoo or xts, you may also pass the timestamp explicitly to
returns.

returns(coredata(dax), t = index(dax), period = "month")

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec YTD
2014 -1.0 4.1 -1.4 0.5 3.5 -1.1 -4.3 0.7 0.0 -1.6 7.0 -1.8 4.3
2015 9.1 6.6 5.0 -4.3 -0.4 -4.1 3.3 -9.3 -5.8 12.3 4.9 -5.6 9.6

Despite the way these monthly returns are printed: the result of the function call is
a numeric vector (the return numbers), with additional information added through
attributes. There is also a class attribute, which has value p_returns. The advan-
tage of this data structure is that it is ‘natural’ to compute with the returns, e.g. to
calculate means, extremes and other quantities.

range(returns(dax, period = "month"))

[1] -0.0928 0.1232

Most useful, however, is probably the print method, whose results you have seen
above. You may also compute monthly returns for matrices, i.e. for more than one
asset. But now the print method will behave differently. The function’s assumption
is that now it would be more convenient to print the returns aligned by date in a
table.

returns(drax, period = "month")

“PMwR” — 2023/10/19 — 8:37 — page 41 — #41

41

dax rex
2014-01-31 -1.0 1.8
2014-02-28 4.1 0.4
2014-03-31 -1.4 0.1
2014-04-30 0.5 0.3
2014-05-30 3.5 0.9
2014-06-30 -1.1 0.4
2014-07-31 -4.3 0.4
2014-08-29 0.7 1.0
2014-09-30 0.0 -0.1
2014-10-31 -1.6 0.1
2014-11-28 7.0 0.4
2014-12-30 -1.8 1.0
2015-01-30 9.1 0.3
2015-02-27 6.6 0.1
2015-03-31 5.0 0.3
2015-04-30 -4.3 -0.5
2015-05-29 -0.4 -0.2
2015-06-30 -4.1 -0.8
2015-07-31 3.3 0.7
2015-08-31 -9.3 0.0
2015-09-30 -5.8 0.4
2015-10-30 12.3 0.4
2015-11-30 4.9 0.3
2015-12-30 -5.6 -0.6

If you rather wanted the other, one-row-per-year display, just call the function sepa-
rately for each series.

lapply(list(DAX = dax, REXP = rex),
returns, period = "month")

$DAX
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec YTD

2014 -1.0 4.1 -1.4 0.5 3.5 -1.1 -4.3 0.7 0.0 -1.6 7.0 -1.8 4.3
2015 9.1 6.6 5.0 -4.3 -0.4 -4.1 3.3 -9.3 -5.8 12.3 4.9 -5.6 9.6

$REXP
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec YTD

2014 1.8 0.4 0.1 0.3 0.9 0.4 0.4 1.0 -0.1 0.1 0.4 1.0 7.1
2015 0.3 0.1 0.3 -0.5 -0.2 -0.8 0.7 0.0 0.4 0.4 0.3 -0.6 0.5

See ?print.p_returns for more display options. For instance:

print(returns(dax, period = "month"),
digits = 2, year.rows = FALSE, plus = TRUE,
month.names = 1:12)

“PMwR” — 2023/10/19 — 8:37 — page 42 — #42

42 Chapter 4. Holding-period returns

2014 2015
1 -1.00 +9.06
2 +4.14 +6.61
3 -1.40 +4.95
4 +0.50 -4.28
5 +3.54 -0.35
6 -1.11 -4.11
7 -4.33 +3.33
8 +0.67 -9.28
9 +0.04 -5.84
10 -1.56 +12.32
11 +7.01 +4.90
12 -1.76 -5.62
YTD +4.31 +9.56

There are methods toLatex and toHTML for monthly returns. In Sweave documents,
you need to use results = tex and echo = false in the chunk options:Sweave

\begin{tabular}{rrrrrrrrrrrrrr}
<<results=tex,echo=false>>=
toLatex(returns(dax, period = "month"))
\end{tabular}

(There is also a vignette that gives examples for toLatex; say vignette("Fin-
TeX", package = "PMwR") to open it.)

To get annualised returns, use period ann (or actually any string matched by the reg-
ular expression ^ann; case is ignored).

returns(dax, period = "ann")

6.9% [02 Jan 2014 -- 30 Dec 2015]

Now let us try a shorter period.

returns(window(dax, end = as.Date("2014-1-31")),
period = "ann")

-1.0% [02 Jan 2014 -- 31 Jan 2014;
less than one year, not annualised]

The function did not annualise: it refuses to do so if the time period is shorter than
one year. (You may verify the return for January 2014 in the tables above.) To force
annualising, add a !. The exclamation mark serves as a mnenomic that it is now im-
perative to annualise.

returns(window(dax, end = as.Date("2014-1-31")),
period = "ann!")

“PMwR” — 2023/10/19 — 8:37 — page 43 — #43

43

-11.8% [02 Jan 2014 -- 31 Jan 2014;
less than one year, but annualised]

There are several more accepted values for period, such as year, quarter, month-
to-date (mtd), year-to-date (ytd) or inception-to-date (total). The help page of
returns lists all options. Note that any such setting for period requires that the
timestamp can be coerced to Date; for instance, intraday time-series with POSIXct
timestamps would work as well.

4.3 Portfolio returns

Sometimes we may need to compute returns for a portfolio of fixed weights, given
an assumption when the portfolio is rebalanced. For instance, we may want to see
how a constant allocation of 10%, 50% and 40%. to three funds would have done, as-
suming that a portfolio is rebalanced once a month. If more detail is necessary, then
function btest can be used; see Chapter Backtesting. But the simple case can be
done with returns already. Here is an example.

prices <- c(100, 102, 104, 104, 104.5,
2, 2.2, 2.4, 2.3, 2.5,

3.5, 3, 3.1, 3.2, 3.1)

dim(prices) <- c(5, 3)
prices

[,1] [,2] [,3]
[1,] 100.0 2.0 3.5
[2,] 102.0 2.2 3.0
[3,] 104.0 2.4 3.1
[4,] 104.0 2.3 3.2
[5,] 104.5 2.5 3.1

Now suppose we want a constant weight vector, [0.1, 0.5, 0.4]′, but only rebalance at
times 1 and 4. (That is, we rebalance the portfolio only with the prices at timestamps
1 and 4.)

returns(prices,
weights = c(10, 50, 40)/100,
rebalance.when = c(1, 4))

[1] -0.0051429 0.0637565 -0.0128240 0.0314590
attr(,"holdings")

[,1] [,2] [,3]
[1,] 0.00100000 0.25000 0.11429
[2,] 0.00100000 0.25000 0.11429

“PMwR” — 2023/10/19 — 8:37 — page 44 — #44

44 Chapter 4. Return contribution

[3,] 0.00100000 0.25000 0.11429
[4,] 0.00096154 0.21739 0.12500
[5,] 0.00096154 0.21739 0.12500
attr(,"contributions")

[,1] [,2] [,3]
[1,] 0.00200000 0.050000 -0.057143
[2,] 0.00201034 0.050258 0.011488
[3,] 0.00000000 -0.023623 0.010799
[4,] 0.00048077 0.043478 -0.012500

The result also contains, as attributes, the imputed holdings and the single period
contributions.

Argument weights does not have to be a vector. It can also be a matrix. In such a
case, each row is interpreted as a portfolio. Instead of weights, we could also specify
fixed positions. See ?returns for different possibilities to call returns.

4.4 Return contribution

Let 𝑤(𝑡, 𝑖) be the weight of portfolio segment 𝑖 at the beginning of period 𝑡, and let
𝑟(𝑡 , 𝑖) be the return of segment 𝑖 over period 𝑡. Then the portfolio return over period 𝑡,
𝑟P(𝑡) is a weighted sum of the 𝑁 segment returns.

𝑟P(𝑡) =
𝑁
∑
𝑖=1

𝑟(𝑡 , 𝑖)𝑤(𝑡, 𝑖) . (4.2)

When the weights sum to unity, we may also write

1 + 𝑟P(𝑡) =
𝑁
∑
𝑖=1

(1 + 𝑟(𝑡, 𝑖))𝑤(𝑡, 𝑖) (4.3)

or, defining 1 + 𝑟 ≡ 𝑅,

𝑅P(𝑡) =
𝑁
∑
𝑖=1

𝑅(𝑡, 𝑖)𝑤(𝑡, 𝑖) . (4.4)

The total return contribution of segment 𝑖 over time equals

𝑇−1
∑
𝑡=1

(𝑅(𝑡, 𝑖)𝑤(𝑡, 𝑖)
𝑇

∏
𝑠=𝑡+1

𝑅P(𝑠) − 1) + 𝑟(𝑇 , 𝑖) 𝑤(𝑇 , 𝑖)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
final period

. (4.5)

In this way, a segment’s return contribution in one period is reinvested in the overall
portfolio in succeeding periods. See Feibel (2003) and Christopherson, Cariño, and
Ferson (2009).

The calculation is provided in the function rc (‘return contribution’).

“PMwR” — 2023/10/19 — 8:37 — page 45 — #45

45

weights <- rbind(c(0.25, 0.75), ## the assets' weights
c(0.40, 0.60), ## during three periods
c(0.25, 0.75))

R <- rbind(c(1 , 0), ## the assets' returns
c(2.5, -1.0), ## during these periods
c(-2 , 0.5))/100

rc(R, weights, segment = c("equities", "bonds"))

$period_contributions
timestamp equities bonds total

1 1 0.0025 0.00000 0.00250
2 2 0.0100 -0.00600 0.00400
3 3 -0.0050 0.00375 -0.00125

$total_contributions
equities bonds total
0.00749 -0.00224 0.00525

4.5 Returns when there are external cashflows

External cashflows (or transfers of positions) can be handled just like dividends. The
following table shows the values and cashflows of a hypothetical portfolio.

timestamp value cashflow value with cashflow
1 0 +100 100
2 101 0 101
3 104 0 104
4 103 +100 203
5 204 -200 4

A total-return series, based on column value with cashflow but excluding column
cashflow, can be computed with div_adjust.

cf <- c(100, 100, -200)
t <- c(1, 4, 5)
x <- c(100, 101, 104, 203, 4)
div_adjust(x, t, div = -cf, backward = FALSE)

[1] 100.00 101.00 104.00 103.00 103.51

More conveniently, the function unit_prices helps to compute so-called time-
weighted returns of a portfolio when there are inflows and outflows. (The term

“PMwR” — 2023/10/19 — 8:37 — page 46 — #46

46 Chapter 4. External Cashflows

time-weighted returns is a misnomer, since returns are not weighted at all. They
are only time-weighted if time-periods are of equal length.) We repeat the previous
example.

NAV <- data.frame(timestamp = 1:5,
NAV = x)

cf <- data.frame(timestamp = t,
cashflow = cf)

unit_prices(NAV, cf)

timestamp NAV price units
1 1 100 100.00 1.000000
2 2 101 101.00 1.000000
3 3 104 104.00 1.000000
4 4 203 103.00 1.970874
5 5 4 103.51 0.038645

The function returns a data-frame: to compute returns, use the price column.

“PMwR” — 2023/10/19 — 8:37 — page 47 — #47

5 Backtesting

This chapter explains how to test trading strategies with the btest function. A re-
cent tutorial is available from SSRN.

5.1 Decisions

At a given instant in time (in actual life, ‘now’), a trader needs to answer the follow-
ing questions:

1. Do I want to compute a new target portfolio, yes or no? If yes, go ahead and
compute the new target portfolio.

2. Given the target portfolio and the actual portfolio, do I want to rebalance (i.e.
close the gap between the actual portfolio and the target portfolio)? If yes,
rebalance.

If such a decision is not just hypothetical, then the answer to the second question
may lead to a number of orders sent to a broker. Note that many traders do not think
in terms of stock (i.e. balances) as we did here; rather, they think in terms of flow
(i.e. orders). Both approaches are equivalent, but the described one makes it easier to
handle missed trades and synchronise accounts.

During a backtest, we will simulate the decisions of the trader. How precisely we
simulate depends on the trading strategy. The btest function is meant as a helper
function to simulate these decisions. The logic for the decisions described above
must be coded in the functions do.signal, signal and do.rebalance.

Implementing btest required a number of decision too: (i) what to model (i.e. how
to simulate the trader), and (ii) how to code it. As an example for point (i): how pre-
cisely do we want to model the order process (e.g. use limit orders?, allow partial
fills?) Example for (ii): the backbone of btest is a loop that runs through the data.

47

https://ssrn.com/abstract=3374195

“PMwR” — 2023/10/19 — 8:37 — page 48 — #48

48 Chapter 5. Data structure

Loops are slow in R when compared with compiled languages,1 so should we vec-
torise instead? Vectorisation is indeed often possible, namely if trading is not path-
dependent. If we have already a list of trades, we can efficiently transform them into
a profit-and-loss in R without relying on an explicit loop (see Section Computing
profit and (or) loss). Yet, one advantage of looping is that the trade logic is more sim-
ilar to actual trading; we may even be able to reuse some code in live trading.

Altogether, the aim for btest is to stick to the functional paradigm as much as pos-
sible. Functions receive arguments and evaluate to results; but they do not change
their arguments, nor do they assign or change other variables ‘outside’ their environ-
ment, nor do the results depend on some variable outside the function. This creates
a problem, namely how to keep track of state. If we know what variables need to be
persistent, we could pass them to the function and always have them returned. But
we would like to be more flexible, so we can pass an environment; examples are be-
low. To make that clear: functional programming should not be seen as a yes-or-no
decision; it is a matter of degree. And more of the functional approach can help al-
ready.

5.2 Data structure

All computations of btest will be based on one or several price series of length T.
Internally, these prices are stored in numeric matrices.

Prices are passed as argument prices. For a single asset, this must be a matrix of
prices with four columns: open, high, low and close.

For n assets, you need to pass a list of length four: prices[[1]] must be a matrix
with n columns containing the open prices for the assets; prices[[2]] is a matrix
with the high prices, and so on. For instance, with two assets, you need four matri-
ces with two columns each:

open high low close
+-+-+ +-+-+ +-+-+ +-+-+
+-+-+ +-+-+ +-+-+ +-+-+

1Unqualified statements such as ‘R is slow’ or ‘loops are slow’ are not useful. In the current version of
pmwr, the overhead of running a backtest with btest with 500 assets and 5000 observations (and rebal-
ancing each of those assets at each of those 5000 timestamps) is less than five seconds; if only few assets
are touched, overhead is less than one second.

“PMwR” — 2023/10/19 — 8:37 — page 49 — #49

49

If only close prices are used, then for a single asset, use either a matrix of one col-
umn or a numeric vector. For multiple assets a list of length one must be passed,
containing a matrix of close prices. For example, with 100 close prices of 5 assets, the
prices should be arranged in a matrix p of size 100 times 5; and prices = list(p).

The btest function runs from b+1 to T. The variable b is the burn-in and it needs
to be a positive integer. When we take decisions that are based on past data, we will
lose at least one data point. In rare cases b may be zero.

Here is an important default: at time =t=, we can use information up to time t-1.
Suppose that t were 4. We may use all information up to time 3, and trade at the
open in period 4:

t time open high low close
1 HH:MM:SS <--\
2 HH:MM:SS <-- - use information
3 HH:MM:SS _________________________ <--/
4 HH:MM:SS X <- trade here
5 HH:MM:SS

We could also trade at the close:

t time open high low close
1 HH:MM:SS <-- \
2 HH:MM:SS <-- - use information
3 HH:MM:SS _________________________ <-- /
4 HH:MM:SS X <-- trade here
5 HH:MM:SS

No, we cannot trade at the high or low. (Some people like the idea, as a robustness
check, to always buy at the high, sell at the low. Robustness checks – forcing a bit
of bad luck into the simulation – are a good idea, notably bad executions. High/low
ranges can inform such checks, but using these ranges does not go far enough, and is
more of a good story than a meaningful test.)

5.3 Function arguments

5.3.1 Available information within functions

btest expects as arguments a number of functions, such as signal; see the next
section for a complete list. The default is to specify no arguments to these functions,
because they can all access the following ‘objects’. These objects actually are, with
the exception of Globals, themselves functions that can access certain data. These

“PMwR” — 2023/10/19 — 8:37 — page 50 — #50

50 Chapter 5. Function arguments

functions can only read; there are no replacement functions. The exception is Glob-
als, which is an environment, and which can explicitly be used for writing (i.e. stor-
ing data).

Open open prices

High high prices

Low low prices

Close close prices

Wealth the total wealth (cash plus positions) at a given point in time

Cash cash (in accounting currency)

Time current time (an integer)

Timestamp the timestamp when that is specified (i.e. when the argument time-
stamp is supplied); if not, it defaults to Time

Portfolio the current portfolio

SuggestedPortfolio the currently-suggested portfolio

Globals an environment (not a function)

All functions take as their first argument a lag, which defaults to 1. So to get the
most recent close price, say

Close()

which is the same as Close(lag = 1).

The lag can be a vector, too: the expression

Close(Time():1)

for instance will return all available close prices. So in period 11, say, you want close
prices for lags 10, 9, …, 1. Hence, to receive prices in their correct order, the lag se-
quence must always be in reverse order.

If you find it awkward to specify the lag in this reverse order, you may use the ar-
gument n instead, which specifies to retrieve the last n data points. So the above
Close(Time():1) is equivalent to

Close(n = Time())

and saying

Close(n = 10)

will get you the last ten closing prices in their actual temporal order.

“PMwR” — 2023/10/19 — 8:37 — page 51 — #51

51

5.3.2 Function arguments

signal The function signal uses information until and including t-1 and returns
the suggested portfolio (a vector) to be held at t. This position should be in
units of the instruments; if you prefer to work with weights, then you should
set convert.weights to TRUE. Then, the value returned by signal will be
interpreted as weights and will be automatically converted to position sizes.

do.signal do.signal uses information until and including t-1 and must re-
turn TRUE or FALSE to indicate whether a signal (i.e. new suggested position)
should be computed. This is useful when the signal computation is costly and
only be done at specific points in time. If the function is not specified, it de-
faults to function() TRUE. Instead of a function, this may also be

• a vector of integers, which then indicate the points in time when to com-
pute a position; or

• a vector of logical values, which then indicate the points in time when to
compute a position; or

• a vector that inherits from the class of timestamp (e.g. Date); or

• one of the keywords firstofmonth, lastofmonth, firstofuqarter
or lastofmonth. In this case, timestamp must inherit from Date or be
coercible to Date. (Options can easily be specified with function nth_-
day in package datetimeutils.)

do.rebalance just like do.signal, but refers to the actual trading. If the function
is not specified, it defaults to function() TRUE. Note that rebalancing can
typically not take place at a higher frequency than implied by signal. That
is because calling signal leads to a position, and when this position does not
change (i.e. signal was not called), there is actually no need to rebalance. So
do.rebalance is normally used when rebalancing should be done less often
that signal computation, e.g. when the decision whether to trade or not is con-
ditional on something.

print.info The function is called at the end of an iteration. Whatever it returns
will be ignored since it is called for its side effect: print information to the
screen, into a file or into some other connection.

cashflow The function is called at the end of each iteration; its value is added to
the cash. The function provides a clean way to, for instance, add accrued in-
terest to or subtract fees from a strategy.

“PMwR” — 2023/10/19 — 8:37 — page 52 — #52

52 Chapter 5. Examples: A single asset

5.4 Examples: A single asset

It is best to describe the btest function through a number of simple examples.

5.4.1 A useless first example

I really like simple examples. Suppose we have a single instrument, and we use only
close prices. The trading rule is to buy, and then to hold forever. All we need is the
time series of the prices and the signal function. As an instrument we use the EURO
STOXX 50 future with expiry September 2015.

timestamp <- structure(c(16679L, 16680L, 16681L, 16682L,
16685L, 16686L, 16687L, 16688L,
16689L, 16692L, 16693L),

class = "Date")
prices <- c(3182, 3205, 3272, 3185, 3201,

3236, 3272, 3224, 3194, 3188, 3213)
data.frame(timestamp , prices)

timestamp prices
1 2015-09-01 3182
2 2015-09-02 3205
3 2015-09-03 3272
4 2015-09-04 3185
5 2015-09-07 3201
6 2015-09-08 3236
7 2015-09-09 3272
8 2015-09-10 3224
9 2015-09-11 3194
10 2015-09-14 3188
11 2015-09-15 3213

The signal function is very simple indeed.

signal <- function()
1

signal must be written so that it returns the suggested position in units of the asset.
In this first example, the suggested position always is 1 unit. It is only a suggested
portfolio because we can specify rules whether or not to trade. Examples follow be-
low.

To test this strategy, we call btest. The initial cash is zero per default, so initial
wealth is also zero in this case. We can change it through the argument initial.cash.

(solution <- btest(prices = prices, signal = signal))

“PMwR” — 2023/10/19 — 8:37 — page 53 — #53

53

initial wealth 0 => final wealth 8

The function returns a list with a number of components, but they are not printed.
Instead, a simple print method displays some information about the results. In this
case, it tells us that the total equity of the strategy increased from 0 to 8.

We arrange more details into a data.frame. suggest is the suggested position;
position is the actual position.

trade_details <- function(solution , prices)
data.frame(price = prices,

suggest = solution$suggested.position ,
position = unname(solution$position),
wealth = solution$wealth,
cash = solution$cash)

trade_details(unclass(solution), prices)

price suggest position wealth cash
1 3182 0 0 0 0
2 3205 1 1 0 -3205
3 3272 1 1 67 -3205
4 3185 1 1 -20 -3205
5 3201 1 1 -4 -3205
6 3236 1 1 31 -3205
7 3272 1 1 67 -3205
8 3224 1 1 19 -3205
9 3194 1 1 -11 -3205
10 3188 1 1 -17 -3205
11 3213 1 1 8 -3205

We bought in the second period because the default setting for the burnin b is 1.
Thus, we lose one observation. In this particular case here, we do not rely in any
way on the past; hence, we set b to zero. With this setting, we buy at the first price
and hold until the end of the data.

solution <- btest(prices = prices, signal = signal,
b = 0)

trade_details(solution , prices)

price suggest position wealth cash
1 3182 1 1 0 -3182
2 3205 1 1 23 -3182
3 3272 1 1 90 -3182
4 3185 1 1 3 -3182
5 3201 1 1 19 -3182
6 3236 1 1 54 -3182
7 3272 1 1 90 -3182

“PMwR” — 2023/10/19 — 8:37 — page 54 — #54

54 Chapter 5. Examples: A single asset

8 3224 1 1 42 -3182
9 3194 1 1 12 -3182
10 3188 1 1 6 -3182
11 3213 1 1 31 -3182

If you prefer the trades only, i.e. not the position series, the solution also contains a
journal. (See Keeping track of transactions: journals for more on journals.)

journal(solution)

instrument timestamp amount price
1 asset 1 1 1 3182

1 transaction

To make the journal more informative, we can pass timestamp and instrument
information when we call btest.

journal(btest(prices = prices, signal = signal, b = 0,
timestamp = timestamp , ## defined above,

together with prices
instrument = "FESX SEP 2015"))

instrument timestamp amount price
1 FESX SEP 2015 2015-09-01 1 3182

1 transaction

Before we go to the next examples, a final remark, on data frequency. I have used
daily data here, but any other frequency, also intraday data, is fine. btest will not
care of what frequency your data are or whether your data are regularly spaced; it
will only loop over the observations that it is given. It is your own responsibility to
write signal (and other functions) in such a way that they encode a meaningful
trade logic.

5.4.2 More-useful examples

Now we make our strategy slightly more selective. The trading rule is to have a po-
sition of 1 unit of the asset whenever the last observed price is below 3200 and to
have no position when it the price is above 3200. The signal function could look
like this.

signal <- function() {
if (Close() < 3200)

1
else

0
}

“PMwR” — 2023/10/19 — 8:37 — page 55 — #55

55

If you like to write clever code, you may as well have written this:

signal <- function()
Close() < 3200

The logical value of the comparison Close() < 3200 would be converted to ei-
ther 0 or 1. But the more verbose version above is clearer.2

We call btest and check the results.

solution <- btest(prices = prices, signal = signal)

trade_details(solution , prices)

price suggest position wealth cash
1 3182 0 0 0 0
2 3205 1 1 0 -3205
3 3272 0 0 67 67
4 3185 0 0 67 67
5 3201 1 1 67 -3134
6 3236 0 0 102 102
7 3272 0 0 102 102
8 3224 0 0 102 102
9 3194 0 0 102 102
10 3188 1 1 102 -3086
11 3213 1 1 127 -3086

(Yes, this strategy works better than the simple buy-and-hold, but I hope you agree
that this is only because of luck.)

The argument initial.position specifies the initial position; default is no posi-
tion. Suppose we had already held one unit of the asset.

solution <- btest(prices = prices, signal = signal,
initial.position = 1)

Then the results would have looked as follows.

trade_details(solution , prices)

price suggest position wealth cash
1 3182 1 1 3182 0
2 3205 1 1 3205 0
3 3272 0 0 3272 3272
4 3185 0 0 3272 3272
5 3201 1 1 3272 71
6 3236 0 0 3307 3307

2Remember what Brian Kernighan said: Everyone knows that debugging is twice as hard as writing a pro-
gram in the first place. So if you’re as clever as you can be when you write it, how will you ever debug it?

“PMwR” — 2023/10/19 — 8:37 — page 56 — #56

56 Chapter 5. Examples: A single asset

7 3272 0 0 3307 3307
8 3224 0 0 3307 3307
9 3194 0 0 3307 3307
10 3188 1 1 3307 119
11 3213 1 1 3332 119

In the example above, we use the close price, but we do not access the data directly.
A function Close is defined by btest and passed as an argument to signal. Note
that we do not add it as a formal argument to signal since this is done automati-
cally. In fact, doing it manually would trigger an error message:

signal <- function(Close = NULL) ## ERROR: argument name
1 ## 'Close' not allowed

Error in btest(prices = prices, signal = signal) :
'Close' cannot be used as an argument name for 'signal'

Similarly, we have functions Open, High and Low; see Section 5.3 above for all func-
tions.

Suppose we wanted to add a variable: a threshold that tells us when to buy. This
would need to be an argument to signal; it would also need to be passed with the
... argument of btest.

signal <- function(threshold) {
if (Close() < threshold)

1
else

0
}

solution <- btest(prices = prices,
signal = signal,
threshold = 3190)

trade_details(solution , prices)

price suggest position wealth cash
1 3182 0 0 0 0
2 3205 1 1 0 -3205
3 3272 0 0 67 67
4 3185 0 0 67 67
5 3201 1 1 67 -3134
6 3236 0 0 102 102
7 3272 0 0 102 102
8 3224 0 0 102 102
9 3194 0 0 102 102
10 3188 0 0 102 102
11 3213 1 1 102 -3111

“PMwR” — 2023/10/19 — 8:37 — page 57 — #57

57

So far we have treated Close as a function without arguments, but actually it has
an argument lag that defaults to 1. Suppose the rule were to buy if the last close is
below the second-to-last close. signal could look like this.

signal <- function() {
if (Close(1L) < Close(2L))

1
else

0
}

We could also have written (Close() < Close(2L)). In any case, the rule uses the
close prices of yesterday and of the day before yesterday, so we need to increase b.

trade_details(btest(prices = prices, signal = signal, b = 2),
prices)

price suggest position wealth cash
1 3182 0 NA NA 0
2 3205 0 0 0 0
3 3272 0 0 0 0
4 3185 0 0 0 0
5 3201 1 1 0 -3201
6 3236 0 0 35 35
7 3272 0 0 35 35
8 3224 0 0 35 35
9 3194 1 1 35 -3159
10 3188 1 1 29 -3159
11 3213 1 1 54 -3159

If we want to trade a different size, we have signal return the desired value.

signal <- function()
if (Close() < 3200)

2 else 0

trade_details(btest(prices = prices, signal = signal), prices)

price suggest position wealth cash
1 3182 0 0 0 0
2 3205 2 2 0 -6410
3 3272 0 0 134 134
4 3185 0 0 134 134
5 3201 2 2 134 -6268
6 3236 0 0 204 204
7 3272 0 0 204 204
8 3224 0 0 204 204
9 3194 0 0 204 204
10 3188 2 2 204 -6172
11 3213 2 2 254 -6172

“PMwR” — 2023/10/19 — 8:37 — page 58 — #58

58 Chapter 5. Examples: A single asset

A often-used way to specify a trading strategy is to map past prices into +1, 0 or -1
for long, flat or short. A signal is often only given at a specified point (like in ‘buy
one unit now’). Example: suppose the third day is a Thursday, and our rule says ‘buy
after Thursday’.

signal <- function()
if (Time() == 3L)

1 else 0

trade_details(btest(prices = prices, signal = signal),
prices)

price suggest position wealth cash
1 3182 0 0 0 0
2 3205 0 0 0 0
3 3272 0 0 0 0
4 3185 1 1 0 -3185
5 3201 0 0 16 16
6 3236 0 0 16 16
7 3272 0 0 16 16
8 3224 0 0 16 16
9 3194 0 0 16 16
10 3188 0 0 16 16
11 3213 0 0 16 16

But this is not what we wanted. If the rule is to buy and then keep the long position,
we should have written it like this.

signal <- function()
if (Time() == 3L)

1 else Portfolio()

The function Portfolio evaluates to last period’s portfolio. Like Close, its first
argument sets the time lag, which defaults to 1.

trade_details(btest(prices = prices, signal = signal), prices)

prices sp asset.1 wealth cash
1 3182 0 0 0 0
2 3205 0 0 0 0
3 3272 0 0 0 0
4 3185 1 1 0 -3185
5 3201 1 1 16 -3185
6 3236 1 1 51 -3185
7 3272 1 1 87 -3185
8 3224 1 1 39 -3185
9 3194 1 1 9 -3185
10 3188 1 1 3 -3185
11 3213 1 1 28 -3185

“PMwR” — 2023/10/19 — 8:37 — page 59 — #59

59

We may also prefer to specify signal so that it evaluates to a weight; for instance,
after a portfolio optimisation. In such a case, you need to set convert.weights to
TRUE. (Make sure to have a meaningful initial wealth: 5 percent of nothing is noth-
ing.)

signal <- function()
0.05

solution <- btest(prices = prices,
signal = signal,
initial.cash = 100,
convert.weights = TRUE)

trade_details(solution , prices)

prices sp asset.1 wealth cash
1 3182 0.00000 0.00000 100 100.0
2 3205 0.00157 0.00157 100 95.0
3 3272 0.00156 0.00156 100 95.0
4 3185 0.00153 0.00153 100 95.1
5 3201 0.00157 0.00157 100 95.0
6 3236 0.00156 0.00157 100 95.0
7 3272 0.00155 0.00155 100 95.0
8 3224 0.00153 0.00153 100 95.1
9 3194 0.00155 0.00155 100 95.0
10 3188 0.00157 0.00157 100 95.0
11 3213 0.00157 0.00157 100 95.0

Note that until now we – potentially – rebalanced in every period. If you do not
want that, we need to specify do.rebalance.

do.rebalance <- function() {
if (sum(abs(

SuggestedPortfolio(0) - Portfolio())) > 1e-3)
TRUE

else
FALSE

}

solution <- btest(prices = prices,
signal = signal,
initial.cash = 100,
do.rebalance = do.rebalance ,
convert.weights = TRUE)

trade_details(solution , prices)

price suggest position wealth cash
1 3182 0.000000 0.000000 100.000 100.00000
2 3205 0.031427 0.031427 100.000 -0.72282

“PMwR” — 2023/10/19 — 8:37 — page 60 — #60

60 Chapter 5. Examples: A single asset

3 3272 0.031201 0.031427 102.106 -0.72282
4 3185 0.031206 0.031427 99.371 -0.72282
5 3201 0.031200 0.031427 99.874 -0.72282
6 3236 0.031201 0.031427 100.974 -0.72282
7 3272 0.031203 0.031427 102.106 -0.72282
8 3224 0.031206 0.031427 100.597 -0.72282
9 3194 0.031203 0.031427 99.654 -0.72282
10 3188 0.031200 0.031427 99.466 -0.72282
11 3213 0.031200 0.031427 100.251 -0.72282

do.rebalance is called after signal. Hence, the suggested position is known and
the lag should be zero (’SuggestedPortfolio(0)’).

The tol argument works similarly: it instructs btest to only rebalance when the
maximum absolute suggested change in any single position is greater than tol. De-
fault is 0.00001, which practically means always rebalance.

solution <- btest(prices = prices,
signal = signal,
initial.cash = 100,
tol = 2e-5,
convert.weights = TRUE)

trade_details(solution , prices)

prices sp asset.1 wealth cash
1 3182 0.00000 0.00000 100 100.0
2 3205 0.00157 0.00157 100 95.0
3 3272 0.00156 0.00157 100 95.0
4 3185 0.00153 0.00153 100 95.1
5 3201 0.00157 0.00157 100 95.0
6 3236 0.00156 0.00157 100 95.0
7 3272 0.00155 0.00155 100 95.0
8 3224 0.00153 0.00155 100 95.0
9 3194 0.00155 0.00155 100 95.0
10 3188 0.00157 0.00155 100 95.0
11 3213 0.00157 0.00157 100 95.0

Passing environments

To keep information persistent, we can use environments. As an example, we store
(and update) the most recent entry price.

notepad <- new.env()
notepad$entry <- numeric(length(prices))

signal <- function(threshold , notepad) {

“PMwR” — 2023/10/19 — 8:37 — page 61 — #61

61

notepad$entry[Time(0L)] <- notepad$entry[Time(1L)]
if (Close() < threshold) {

if (Portfolio() < 1)
notepad$entry[Time(0L)] <- Close(0L)

1
} else {

0
}

}

solution <- btest(prices = prices,
signal = signal,
threshold = 3200,
notepad = notepad)

cbind(trade_details(solution , prices), entry = notepad$entry)

price suggest position wealth cash entry
1 3182 0 0 0 0 0
2 3205 1 1 0 -3205 3205
3 3272 0 0 67 67 3205
4 3185 0 0 67 67 3205
5 3201 1 1 67 -3134 3201
6 3236 0 0 102 102 3201
7 3272 0 0 102 102 3201
8 3224 0 0 102 102 3201
9 3194 0 0 102 102 3201
10 3188 1 1 102 -3086 3188
11 3213 1 1 127 -3086 3188

Let us check.

subset(journal(solution), amount > 0)

btest provides an environment Globals for exactly such purposes.

signal <- function(threshold) {
Globals$entry[Time(0L)] <- Globals$entry[Time(1L)]
if (Close() < threshold) {

if (Portfolio() < 1)
Globals$entry[Time(0L)] <- Close(0L)

1
} else {

0
}

}

solution <- btest(prices = prices,
signal = signal,

“PMwR” — 2023/10/19 — 8:37 — page 62 — #62

62 Chapter 5. Examples: Several assets

threshold = 3200,
include.data = TRUE)

cbind(trade_details(solution , prices),
entry = solution$Globals$entry)

price suggest position wealth cash entry
1 3182 0 0 0 0 NA
2 3205 1 1 0 -3205 3205
3 3272 0 0 67 67 3205
4 3185 0 0 67 67 3205
5 3201 1 1 67 -3134 3201
6 3236 0 0 102 102 3201
7 3272 0 0 102 102 3201
8 3224 0 0 102 102 3201
9 3194 0 0 102 102 3201
10 3188 1 1 102 -3086 3188
11 3213 1 1 127 -3086 3188

5.5 Examples: Several assets

It does not really make a difference whether btest is called with a single or with
several instruments. The pattern in signal is still to call Close() and friends to ob-
tain data, but now these functions will return matrices with more than one column.
For instance, when you have 5 assets, then Close(n = 250) would return a matrix
of size 250 × 5. When signal has finished its computations, it is now expected to re-
turn a vector of positions or weights. In the example with 5 assets, it should return a
vector of length 5.

5.5.1 A simple example

prices1 <- c(100,98, 98, 97, 96, 98,97,98,99,101)
prices2 <- c(100,99,100,102,101,100,96,97,95,82)
prices <- cbind(A = prices1, B = prices2)

signal <- function()
if (Close()[1L] > Close()[2L])

c(2, 0) else c(0, 1)

(solution <- btest(prices = list(prices),
signal = signal,
b=2))

“PMwR” — 2023/10/19 — 8:37 — page 63 — #63

63

trade_details <- function(solution , prices)
data.frame(price = prices,

suggest = solution$suggested.position ,
position = solution$position , ## do not unname
wealth = solution$wealth,
cash = solution$cash)

trade_details(solution , prices)

price.A price.B suggest.A suggest.B position.A position.B wealth cash
1 100 100 0 0 NA NA NA 0
2 98 99 0 0 0 0 0 0
3 98 100 0 1 0 1 0 -100
4 97 102 0 1 0 1 2 -100
5 96 101 0 1 0 1 1 -100
6 98 100 0 1 0 1 0 -100
7 97 96 0 1 0 1 -4 -100
8 98 97 2 0 2 0 -3 -199
9 99 95 2 0 2 0 -1 -199
10 101 82 2 0 2 0 3 -199

journal(solution)

instrument timestamp amount price
1 B 3 1 100
2 A 8 2 98
3 B 8 -1 97

3 transactions

5.6 Miscellaneous

There is more than one way to accomplish a certain task.

5.6.1 Handling missing values

Missing values are everywhere financial time-series. (I do hope the irony is not
wasted.) There are holidays on some exchanges but not on others; stocks and bonds
become halted or delisted; derivatives and bonds come to life and expire; or databases
may simply lack prices for certain dates because of technical glitches.

Backtesting requires careful data preparation, which includes handling missing val-
ues. Unfortunately, there is no foolproof way to handle NA values, which is why

“PMwR” — 2023/10/19 — 8:37 — page 64 — #64

64 Chapter 5. Miscellaneous

btest does not have an na.rm argument. (In an experimental branch, there is an
argument allow.na; but that branch will probably never be merged into the master
branch.)

The strategies to handle NA values depend on the situation. If only initial price obser-
vations are missing, you can set the burnin b so that those values are skipped.

Copying forward the last available price is often acceptable for liquid assets when
positions need to be valued, or perhaps when indicators such as moving averages are
computed. But the backtest should in general not trade on such prices. This is most
obvious for illiquid instruments such as options: the last trade may be some time
back, and in the meantime market makers may have substantially moved bid/ask.

A more-general approach is to keep track of available assets. It is useful here to keep
in mind btest’s general mechanism for computing trades: it compares suggested
positions with actual ones, and considers the differences to be trades. However, if
both suggested and actual positions are zero, nothing needs to be done for those as-
sets. And btest takes this literally: those assets will not be included in computa-
tions such as the valuation of the portfolio. So a generic strategy is to check whether
asset prices exists when the suggested portfolio is computed and to set the positions
of missing values to zero.

Two examples follow.

prices <- 11:15
prices[4:5] <- NA

signal <- function() {
if (Time(0) <= 2)

1 else 0
}
bt <- btest(prices, signal)
position(bt)
journal(bt)

[,1]
[1,] 0
[2,] 1
[3,] 0
[4,] 0
[5,] 0

instrument timestamp amount price
1 asset 1 2 1 12
2 asset 1 3 -1 13

2 transactions

“PMwR” — 2023/10/19 — 8:37 — page 65 — #65

65

prices <- cbind(11:15, NA)

signal <- function()
c(1, 0)

bt <- btest(list(prices), signal)
position(bt)
journal(bt)

[,1] [,2]
[1,] 0 0
[2,] 1 0
[3,] 1 0
[4,] 1 0
[5,] 1 0

instrument timestamp amount price
1 asset 1 2 1 12

1 transaction

5.6.2 Distributing backtest computations

btest offers functionality to run several backtests, or variations of backtests, auto-
matically. Since such computations are independent from each other, they can also
be distributed. btest relies on the parallel package to do this.

A simple example.

library("PMwR")
signal <- function(h) {

if (Close() > h)
1

else
0

}

btest(1:10, signal = signal, h = 1)

You may now specify variations for each argument.

btest(1:10, signal = signal, variations = list(h = 1:5))

The default is to process these variations through a loop.

signal <- function(h) {
Sys.sleep(0.1)
if (Close() > h)

“PMwR” — 2023/10/19 — 8:37 — page 66 — #66

66 Chapter 5. Miscellaneous

1
else

0
}
system.time(btest(1:10, signal = signal, variations = list(h = 1:5)))
system.time(btest(1:10, signal = signal, variations = list(h = 1:5),

variations.settings = list(method = "parallel", cores = 5)))

signal1 <- function()
1

signal2 <- function()
2

btest(1:10, variations = list(signal = list(signal1, signal2)))

5.6.3 Remembering an entry price

In signal, assign the current price (with lag 0) to Globals. (That is easiest because
do.rebalance may not be defined.)

5.6.4 Delaying signals

In real life, the information that is used for computing signals may arrive later ex-
pected. (This can happen on any time-scale, i.e. for high and low frequency trading.)
Or our signal is current, but for some reason we cannot execute a trade.

The first case can usually be handled in signal, e.g. by using larger lags. One way
to incorporate the second case is to add a random variable to do.rebalance:

if (runif(1) > prob_of_delay)
TRUE else FALSE

If TRUE, rebalancing will take place.

5.6.5 Specifying when to compute a signal and trade

btest takes two functions, do.signal and do.rebalance, that tell the algorithm
when to compute a new portfolio and when to rebalance. There are different ways to
specify these points in time: as a function that returns TRUE or FALSE (most general),
but also as integers, logicals or actual timestamps (e.g. dates).

“PMwR” — 2023/10/19 — 8:37 — page 67 — #67

67

Supplying particular timestamps is useful when you know you want to trade on a
specific calendar day, say. That is OK because you know in advance when this cal-
endar day is going to be. But be careful when you use other information to specify
when to trade. The following examples are not equivalent:

btest(prices = prices,
signal = signal,
do.signal = prices > 3600)

btest(prices = prices,
signal = signal,
do.signal = function() Close() > 3600)

Loosely speaking, both variations compute a signal and trade only when prices is
above 3600. But in the first version, there will be no time lag: if the prices exceeds
3600 at time ti, we will trade at ti. In the second example, Close() comes with a
default lag of 1: if the price exceeds 3600 at ti, we will trade at ti+1, which is the more
realistic case.

When timestamp is of a type that can be coerced to Date, you can also use the key-
words such as firstofmonth or lastofmonth:

btest(prices = prices,
signal = signal,
do.signal = "firstofmonth")

5.6.6 Writing a log

Specify the function print.info. The function is called at the very end of an itera-
tion, so it is best to use no time lag. An example

1 print.info <- function() {
2 cat("Time",
3 sprintf("%2d", Time(0L)), "...",
4 sprintf("%3d", Wealth(0L)), "\n")
5 flush.console()
6 }

And since cat has a file argument, you can have it write such information into a
logfile.

5.6.7 Selecting parameters: calling btest recursively

Suppose you have a strategy that depends on a parameter vector 𝜃. For a given 𝜃, the
signal for the strategy would look like this.

“PMwR” — 2023/10/19 — 8:37 — page 68 — #68

68 Chapter 5. Miscellaneous

signal <- function(theta) {
compute position as a function of theta

}

Now suppose we do not know theta. We might want to test several values, and then
keep the best one. For this, we need to call btest recursively: at a point in time t, the
strategy simulates the results for various values for theta and chooses the best theta,
according to some criterion f.

A useful idiom is this:

signal <- function(theta) {
if (not defined theta) {

- run btest with theta_1, ... \theta_n, select best theta
- theta = argmin_theta f(btest(theta_i))

}

compute position as a function of theta
}

btest will first be invoked without 𝜃 (or NULL). When the function calls signal, 𝜃 is
not defined and signal will call btest with a specified 𝜃.

Let us look at an actual example.

require("tseries")
require("zoo")
require("runStats")

tmp <- get.hist.quote("^GSPC",
start = "2010-01-01",
end = "2013-12-31", quote = "Close")

signal <- function(Data) {

if (is.na(Data$N)) {
message(Timestamp(0))

price <- Close(n = 500)
Ns <- c(10,20)

Data1 <- list(N = 10, hist = 200)
res1 <- btest(price, signal, Data = Data1, b = 200)

Data2 <- list(N = 20, hist = 200)
res2 <- btest(price, signal, Data = Data2, b = 200)

“PMwR” — 2023/10/19 — 8:37 — page 69 — #69

69

message("N 10 : ", round(tail(res1$wealth, 1), 2))
message("N 20 : ", round(tail(res2$wealth, 1), 2))

N <- if (tail(res1$wealth, 1) > tail(res2$wealth, 1))
10

else
20

message("N is ---> ", N, "\n")
} else {

N <- Data$N
}

##
price <- Close(n = Data$hist)
MA <- runStats("mean", price, N = N)
pos <- 0
if (Close() > tail(MA, 1))

pos <- 1
pos

}

Data <- list(N = NA, hist = 200)
res <- btest(tmp$Close, signal,

Data = Data,
b = 500,
initial.cash = 100,
convert.weights = TRUE,
timestamp = index(tmp))

par(mfrow = c(2,1))
plot(index(tmp), res$wealth, type = "s")
plot(tmp)

5.6.8 Time-varying asset universes

We’ll see how to deal with a particular case of missing values: when certain assets
are available only at certain times. We first get some data: time-series of industry
portfolios from Kenneth French’s website at https://mba.tuck.dartmouth.edu/
pages/faculty/ken.french/ The dataset comprises 30 series of daily data, and
we use a subset that starts in January 1990.

library("NMOF")
library("zoo")
P <- French(dest.dir = tempdir(),

"30_Industry_Portfolios_daily_CSV.zip",
price.series = TRUE,

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/

“PMwR” — 2023/10/19 — 8:37 — page 70 — #70

70 Chapter 5. Miscellaneous

na.rm = TRUE)

P <- zoo(P, as.Date(row.names(P)))
P <- window(P, start = as.Date("1990-1-1"))
str(P)

‘’
zoo series from 1990-01-02 to 2021-01-29

Data: num [1:7831, 1:30] 807 802 796 790 790 ...
- attr(*, "dimnames")=List of 2
..$: chr [1:7831] "1990-01-02" "1990-01-03" ...
..$: chr [1:30] "Food" "Beer" "Smoke" "Games" ...
Index: Date[1:7831], format: "1990-01-02" ...

Actually, the data are complete: there are no missing values.

any(is.na(P))

[1] FALSE

So let us make them incomplete: in series 16 to 30, we remove all data before Jan-
uary 2000.

window(P[, 16:30], end = as.Date("1999-12-31")) <- NA

The key feature of btest to handle such data is this: if an asset is not selected (i.e.
has a zero position), it is not required for valuing the position, and so it can be miss-
ing. Suppose we wanted to to simulate a 50/50 investment in only the first two series
(which, we know, are complete). With btest, we could do it as follows.

library("PMwR")
bt <- btest(prices = list(coredata(P)),

timestamp = index(P),
signal = function() {

w <- numeric(ncol(Close()))
w[1:2] <- c(0.5, 0.5)
w

},
do.signal = "lastofquarter",
convert.weights = TRUE,
initial.cash = 100)

head(journal(bt), n = 10, by = FALSE)

As you can see, the function does not complain. If you check the journal, you’ll find
that all transactions have been in Food and Beer, the first two industries.

instrument timestamp amount price
1 Food 1990-03-30 0.0660393017 758.8663

“PMwR” — 2023/10/19 — 8:37 — page 71 — #71

71

2 Beer 1990-03-30 0.0335054119 1481.5517
3 Food 1990-06-29 0.0026905121 842.7345
4 Beer 1990-06-29 -0.0011305346 1775.1047
5 Food 1990-09-28 -0.0014597110 774.9077
6 Beer 1990-09-28 0.0007077629 1575.3859
7 Food 1990-12-31 0.0008250171 881.3539
8 Beer 1990-12-31 -0.0003957095 1824.9844
9 Food 1991-03-28 -0.0004125792 1079.7564
10 Beer 1991-03-28 0.0001984854 2237.6230

10 transactions

Now we can start the actual example. The aim in this exercise is to compute a minimum-
variance portfolio over all available assets. We begin by defining when certain assets
were available, and placing this information in a data-frame active.

active <- data.frame(instrument = colnames(P),
start = c(rep(as.Date("1990-1-1"), 15),

rep(as.Date("2001-1-1"), 15)),
end = tail(index(P), 1))

active

instrument start end
1 Food 1990-01-01 2021-01-29
2 Beer 1990-01-01 2021-01-29
3 Smoke 1990-01-01 2021-01-29
4 Games 1990-01-01 2021-01-29
5 Books 1990-01-01 2021-01-29
6 Hshld 1990-01-01 2021-01-29
7 Clths 1990-01-01 2021-01-29
8 Hlth 1990-01-01 2021-01-29
9 Chems 1990-01-01 2021-01-29
10 Txtls 1990-01-01 2021-01-29
11 Cnstr 1990-01-01 2021-01-29
12 Steel 1990-01-01 2021-01-29
13 FabPr 1990-01-01 2021-01-29
14 ElcEq 1990-01-01 2021-01-29
15 Autos 1990-01-01 2021-01-29
16 Carry 2001-01-01 2021-01-29
17 Mines 2001-01-01 2021-01-29
18 Coal 2001-01-01 2021-01-29
19 Oil 2001-01-01 2021-01-29
20 Util 2001-01-01 2021-01-29
21 Telcm 2001-01-01 2021-01-29
22 Servs 2001-01-01 2021-01-29
23 BusEq 2001-01-01 2021-01-29
24 Paper 2001-01-01 2021-01-29
25 Trans 2001-01-01 2021-01-29
26 Whlsl 2001-01-01 2021-01-29

“PMwR” — 2023/10/19 — 8:37 — page 72 — #72

72 Chapter 5. Miscellaneous

27 Rtail 2001-01-01 2021-01-29
28 Meals 2001-01-01 2021-01-29
29 Fin 2001-01-01 2021-01-29
30 Other 2001-01-01 2021-01-29

Note that we did set start to 2001, not 2000. You’ll see shortly, why.

Now for the signal function. It receives active as an argument.

mv <- function(active) {

find those assets that are active
==> 'j' is a logical vector that
indicates the active assets
j <- Timestamp() >= active[["start"]] &

Timestamp() <= active[["end"]]

get last 260 prices of active assets and compute
variance --covariance matrix
P.j <- Close(n = 260)[, j]
R.j <- returns(P.j)
S <- cov(R.j)

compute minimum-variance weights
w.j <- NMOF::minvar(S, wmin = 0, wmax = 0.10)

create a zero-vector with length equal to number
of total assets and assign the weights at
appropriate positions
w <- numeric(length(j))
w[j] <- w.j
w

}

Now you see why we used 2001 as the start date for series 16 to 30: we’ll use one
year of historical data to compute the variance-covariance matrix. (Note that there
are better ways to come up with forecasts of the variance-covariance matrix, e.g.
methods that apply shrinkage. But the purpose of this note is to show how to handle
missing values in btest, not to discuss empirical methods.)

We call btest.

bt.mv <- btest(prices = list(coredata(P)),
timestamp = index(P),
signal = mv,
do.signal = "lastofquarter",

“PMwR” — 2023/10/19 — 8:37 — page 73 — #73

73

convert.weights = TRUE,
initial.cash = 100,
active = active,
b = 260)

bt.mv

initial wealth 100 => final wealth 1779.84
Total return 1679.8%

The backtest runs without problems. As an example, let us check trades in industry
Oil.

head(journal(bt.mv)["Oil"], 5)

instrument timestamp amount price
1 Oil 2001-03-30 0.0104934366 2656.871
2 Oil 2001-06-29 -0.0003607878 2709.119
3 Oil 2001-09-28 0.0011873853 2383.685
4 Oil 2001-12-31 -0.0043576713 2549.018
5 Oil 2002-03-28 -0.0037902744 2807.207

5 transactions

As expected, the first trades occur only in 2001.

A final remark: we would not have needed to prepare active upfront. Instead, we
could have checked for missing values in the signal function.

mv_with_NA_check <- function() {

fetch data and check for missing values
P <- Close(n = 260)
j <- !apply(P, 2, anyNA)

get last 250 prices of active assets and compute
variance --covariance matrix
P.j <- P[, j]
R.j <- returns(P.j)
S <- cov(R.j)

compute minimum-variance weights
w.j <- NMOF::minvar(S, wmin = 0, wmax = 0.10)

create a zero-vector with length equal to number
of total assets and assign the weights at
appropriate positions
w <- numeric(length(j))
w[j] <- w.j
w

}

“PMwR” — 2023/10/19 — 8:37 — page 74 — #74

74 Chapter 5. Miscellaneous

bt.mv2 <- btest(prices = list(coredata(P)),
timestamp = index(P),
signal = mv_with_NA_check,
do.signal = "lastofquarter",
convert.weights = TRUE,
initial.cash = 100,
b = 260)

bt.mv2
head(journal(bt.mv)["Oil"], 5)

initial wealth 100 => final wealth 1779.84
Total return 1679.8%

instrument timestamp amount price
1 Oil 2001-03-30 0.0104934366 2656.871
2 Oil 2001-06-29 -0.0003607878 2709.119
3 Oil 2001-09-28 0.0011873853 2383.685
4 Oil 2001-12-31 -0.0043576713 2549.018
5 Oil 2002-03-28 -0.0037902744 2807.207

5 transactions

We get the same results. But defining an explicit list is more, well, explicit. Which is
often a good thing when analysing data; notably, because it sets an expectation that
those active time-series don’t have missing values.

“PMwR” — 2023/10/19 — 8:37 — page 75 — #75

6 Rebalancing a portfolio

In principle, rebalancing a portfolio is straightforward. You have a current position
𝑥0, and a target position 𝑥1. You take the elementwise difference between these vec-
tors, and you obtain the orders that you need to have executed.

Software can help here in two ways. First, it can make the process of order genera-
tion faster, simpler and more reliable, by computing and creating orders, and submit-
ting them automatically. Second, software can help to determine how to rebalance.
Institutional investors spend large amounts of time on rebalancing, because here
they can measure improvements (notably, saved transaction costs).

6.1 Usage with unnamed vectors

The function rebalance computes the transactions necessary for moving from one
portfolio to another. The default setting is that the current portfolio is in currency
units; the target portfolio in weights.

To compute the required order sizes, we also need the current prices of the assets.
When current, target and price are unnamed, the assets’ positions in the vectors
need to match.

Suppose we have three stocks A, B and C with prices 1, 2 and 3. The main use case
is a situation like this: you hold 50, 30 and 20 shares of these three stocks. However,
suppose you have a target weight of 50%, 30% and 20%.

prices <- 1:3
current <- c(50, 30, 20)
target <- c(0.5, 0.3, 0.2)
rebalance(current, target, prices, match.names = FALSE)

price current value % target value % order
1 1 50 50 29.4 85 85 50.0 35
2 2 30 60 35.3 26 52 30.6 -4

75

“PMwR” — 2023/10/19 — 8:37 — page 76 — #76

76 Chapter 6. Usage with unnamed vectors

3 3 20 60 35.3 11 33 19.4 -9

Notional: 170. Target net amount : 170. Turnover (2-way): 70.

Or perhaps you prefer an equal weight for every asset. Note that target now is a
single number.

rebalance(current, target = 1/length(current),
price = prices, match.names = FALSE)

price current value % target value % order
1 1 50 50 29.4 57 57 33.5 7
2 2 30 60 35.3 28 56 32.9 -2
3 3 20 60 35.3 19 57 33.5 -1

Notional: 170. Target net amount : 170. Turnover (2-way): 14.

Note that the target weights cannot be reached exactly because the function rounds
to integers.

rebalance also supports a number of special cases. Suppose you want to go into
cash and close every position.

1 rebalance(current = current, target = 0,
2 price = prices, match.names = FALSE)

price current value % target value % order
1 1 50 50 29.4 0 0 0.0 -50
2 2 30 60 35.3 0 0 0.0 -30
3 3 20 60 35.3 0 0 0.0 -20

Notional: 170. Target net amount : 0. Turnover (2-way): 170.

Suppose we have no current position and want to give equal weight to each stock.
Note first that we need to specify a notional. Also, rebalance now assumes that
you want to invest in every stock for which a price is supplied.

1 rebalance(current = 0, target = 1/3, notional = 100,
2 price = prices, match.names = FALSE)

price current value % target value % order
1 1 0 0 0.0 33 33 33.0 33
2 2 0 0 0.0 17 34 34.0 17
3 3 0 0 0.0 11 33 33.0 11

Notional: 100. Target net amount : 100. Turnover (2-way): 100.

“PMwR” — 2023/10/19 — 8:37 — page 77 — #77

77

6.2 Usage with named vectors

More usefully, rebalance can also use the names of the vectors current, target
and price. The argument match.names must be set to TRUE for this (which is the
default, actually).

prices <- c(1,1,1,1)
names(prices) <- letters[1:4]
current <- c(a = 0, b = 10)
target <- c(a = 0, d = 0.5)
rebalance(current, target, prices)

price current value % target value % order
b 1 10 10 100.0 0 0 0.0 -10
d 1 0 0 0.0 5 5 50.0 5

Notional: 10. Target net amount : 5. Turnover (2-way): 15.

To also show all instruments, set the argument drop.zero to FALSE.

print(rebalance(current, target, prices), drop.zero = FALSE)

price current value % target value % order
a 1 0 0 0.0 0 0 0.0 0
b 1 10 10 100.0 0 0 0.0 -10
d 1 0 0 0.0 5 5 50.0 5

Notional: 10. Target net amount : 5. Turnover (2-way): 15.

6.3 Usage with positions

In Section Keeping track of transactions: journals we used the function position to
compute balances from transactions. The function may also be directly used to set
up a position.

position(amount = 1)

1

position(amount = c(1, 2, 3), instrument = letters[1:3])

a 1
b 2
c 3

“PMwR” — 2023/10/19 — 8:37 — page 78 — #78

78 Chapter 6. Constructive methods: An example

Note that with more than one instrument, these instruments need to be named. Oth-
erwise, position would aggregate the positions (as it does for a journal). As a short-
cut, you can also pass a named vector. (See http://enricoschumann.net/notes/
computing-positions.html for more details.)

position(amount = c(a = 1, b = 2, c = 3))

a 1
b 2
c 3

Such positions can now be passed as arguments current and target into function
rebalance.

6.4 Constructive methods: An example

We want to rebalance, and we have a vector of current weights and a vector of target
weights.

The following rules apply:

• new titles (i.e. with current weight zero) are bought and get their target weight

• titles that have a zero target weight are removed from the portfolio

• after the first two rules have been applied, there will probably remain a non-
zero cash position. We try to reduce it to zero with the least number of trades:
when buying, we start with the assets with the lowest current weights, and
vice versa

The function rebalance1 takes as input the current portfolio (current), the target
portfolio (target) and min max weights (wmin und wmax). The target portfolio tar-
get must conform with the weight limits, i.e. all weights must be between wmin und
wmax.

rebalance1 <- function(current, target, wmin = 0.025, wmax = 0.075) {
stopifnot(length(current) == length(target))
stopifnot(wmax >= wmin)
zero <- 1e-10

ans <- numeric(length(current))

new assets
i <- current < zero & target > zero
ans[i] <- target[i]

http://enricoschumann.net/notes/computing-positions.html
http://enricoschumann.net/notes/computing-positions.html

“PMwR” — 2023/10/19 — 8:37 — page 79 — #79

79

old and new assets
i <- current > zero & target > zero
ans[i] <- pmin(pmax(current[i], wmin), wmax)

cash <- 1 - sum(ans)

pos <- target > zero
while (cash > 0) {

room <- wmax - ans[pos]
i <- which.max(room)[1]
eps <- min(room[i], cash)
ans[pos][i] <- ans[pos][i] + eps
cash <- cash - eps

}
while (cash < 0) {

room <- ans[pos] - wmin
i <- which.max(room)[1]
eps <- min(room[i], -cash)
ans[pos][i] <- ans[pos][i] - eps
cash <- cash + eps

}
ans

}

A test: random portfolios random_p

random_p <- function(n, wmin = 0.01, wmax = 0.09) {
.min <- 0
.max <- 2
while(.min < wmin || .max > wmax) {

k <- sample(18:25,1)
ans <- numeric(n)
ans[sample(n,k)] <- runif(k)
ans <- ans/sum(ans)
.min <- min(ans[ans > 0])
.max <- max(ans)

}
ans

}

current <- random_p(30)
target <- random_p(30)
new <- rebalance1(current, target)

data.frame(
current = current,
target = target,
new = new,

“PMwR” — 2023/10/19 — 8:37 — page 80 — #80

80 Chapter 6. Algorithms

weights_differ = current != target,
do_trade = current != new)

6.5 Algorithms

Whenever you need to round positions, you may prefer to do an actual optimisation.
The ideal place for this optimisation is the original objective function, not in rebal-
ance. And the differences, if there are any at all, are typically small. But here is an
example.

n <- 10
target <- runif(n)
target <- target/sum(target)
price <- sample(10:200, n, replace = TRUE)
s <- sample(c(1,5,10,100), n, replace = TRUE,

prob = c(0.4,0.4,0.1,0.1))
data.frame(price = price, lot.size = s)

price lot.size
1 178 5
2 37 5
3 62 5
4 93 1
5 81 5
6 111 5
7 146 5
8 154 5
9 187 1
10 138 1

Now suppose we have only a limited budget available.

budget <- 10000
x <- rebalance(0, target, notional = budget,

price = price, match.names = FALSE)
x

price current value % target value % order
1 178 0 0 0.0 4 712 7.1 4
2 37 0 0 0.0 40 1480 14.8 40
3 62 0 0 0.0 20 1240 12.4 20
4 93 0 0 0.0 16 1488 14.9 16
5 81 0 0 0.0 13 1053 10.5 13
6 111 0 0 0.0 6 666 6.7 6
7 146 0 0 0.0 4 584 5.8 4
8 154 0 0 0.0 6 924 9.2 6

“PMwR” — 2023/10/19 — 8:37 — page 81 — #81

81

9 187 0 0 0.0 5 935 9.3 5
10 138 0 0 0.0 7 966 9.7 7

Notional: 10000. Amount invested: 10048. Total (2-way) turnover: 10048.

Now we use TAopt, from the NMOF package, to find the optimal integer portfolio.

require("NMOF")
ediff <- function(x) {

tmp <- x*price/budget - target
sum(tmp*tmp)

}

neighbour <- function(x) {
i <- sample.int(length(x), size = 1L)
x[i] <- x[i] + if (runif(1) > 0.5) - s[i] else s[i]
x

}

sol <- TAopt(ediff,
algo = list(x0 = numeric(length(price)),

neighbour = neighbour ,
q = 0.1,
nS = 1000,
printBar = FALSE))

Threshold Accepting.

Computing thresholds ... OK.
Estimated remaining running time: 0.23 secs.

Running Threshold Accepting...
Initial solution: 0.109341
Finished.
Best solution overall: 0.001108741

df <- data.frame(TA = sol$xbest, rounded = s*round(x$target/s))
df[apply(df, 1, function(i) any(i != 0)),]

TA rounded
1 5 5
2 40 40
3 20 20
4 16 16
5 15 15
6 5 5
7 5 5
8 5 5

“PMwR” — 2023/10/19 — 8:37 — page 82 — #82

82 Chapter 6. Substituting a basket by its components

9 5 5
10 7 7

The difference.

ediff(sol$xbest) - ediff(s*round(x$target/s))

[1] 0

6.6 Substituting a basket by its components

If you run tests with baskets of instruments or whole strategies, you often need to
substitute the components of the basket for overall basket. pmwr provides a function
replace_weight that helps with this task. (It is also helpful if you have hierarchies
of benchmarks or want to do a ‘lookthrough’ through a subportfolio within your
portfolio.)

Suppose we have this weight vector:

w <- c(basket_1 = 0.3,
basket_2 = 0.5,
basket_3 = 0.2)

We also know what the first two baskets represent.

b1 <- c(a = 0.5, b = 0.2, c = 0.3)
b2 <- c(d = 0.1, e = 0.2, a = 0.7)

Now we can call replace_weight.

replace_weight(w,
basket_1 = b1,
basket_2 = b2)

basket_1::a basket_1::b basket_1::c
0.15 0.06 0.09

basket_2::d basket_2::e basket_2::a
0.05 0.10 0.35

basket_3
0.20

If the names of the baskets or of the things in the baskets have spaces or other char-
acters that cause trouble, quote them.

“PMwR” — 2023/10/19 — 8:37 — page 83 — #83

83

replace_weight(c("basket 1" = 0.3,
"basket 2" = 0.7),

"basket 1" = b1,
"basket 2" = b2)

“PMwR” — 2023/10/19 — 8:37 — page 84 — #84

84 Chapter 6. Substituting a basket by its components

“PMwR” — 2023/10/19 — 8:37 — page 85 — #85

7 Summarising portfolio time-
series

Strategies or portfolios are often analysed purely through their price series (a.k.a.
nav or equity series): more-detailed data may not be available, e.g. for a fund; or it
may simply be more convenient to aggregate positions to a single nav.

To handle such series, pmwr provides an s3 class NAVseries. (I will write nav series
for the actual data series and NAVseries for the specific implementation.) An nav
series is nothing more than a time-series: a vector of navs, together with a vector
of timestamps. Then why not simply use an existing time-series class, such as zoo?
One reason is clarity. A zoo or xts object is much more general than an NAV series:
it may represent more than one series; or it may represent, for instance, returns. An
NAV series promises to represent NAVs (i.e. levels, not changes in levels) of a single
series, nothing else. Furthermore, defining our own class allows us to define spe-
cific methods where appropriate; at the same time we may piggyback on existing
time-series methods by defining methods for coercion, e.g. as.zoo.NAVseries or
as.xts.NAVseries.

7.1 Creating NAV series

pmwr comes with a dataset called DAX, which stands for Deutscher Aktienindex (Ger-
man Equity Index). The dataset is a data-frame of one column that contains the price
for the day, with the timestamps stored as rownames in format YYYY-MM-DD.

str(DAX)

'data.frame': 505 obs. of 1 variable:
$ DAX: num 9400 9435 9428 9506 9498 ...

head(DAX)

85

“PMwR” — 2023/10/19 — 8:37 — page 86 — #86

86 Chapter 7. Summarising NAV series

DAX
2014-01-02 9400.04
2014-01-03 9435.15
2014-01-06 9428.00
2014-01-07 9506.20
2014-01-08 9497.84
2014-01-09 9421.61

We first transform the data-frame into an NAVseries by calling the function of the
same name.

dax <- NAVseries(DAX[[1]],
timestamp = as.Date(row.names(DAX)),
title = "DAX")

dax

A concise summary is printed.

DAX
02 Jan 2014 ==> 30 Dec 2015 (505 data points, 0 NAs)

9400.04 10743

There is also a generic function as.NAVseries, which can be used, for instance, to
coerce zoo series to NAVseries. Or, after having run a backtest (see Chapter Back-
testing), saying

as.NAVseries(btest(....))

extracts the nav series from the backtest data.

7.2 Summarising NAV series

Calling summary on an nav series should provide useful statistics of the series. You
may notice that the summary does not provide too many statistics. It has been said
that the purpose of statistics is to reduce many numbers to only few – not the other
way around. Thus, summary.NAVseries will confine itself to few statistics that can
be computed in a reasonably robust way. By that I mean that a statistic is useful for
many types of nav series.1 Numbers that are provided should be formatted and pre-
sented in a way that is inline with (good) industry practice and makes sense statis-
tically. Returns, for instance, will only be annualised when the NAV series spans
1An example of a statistic that cannot be computed in a robust way is a beta coefficient – or, in fact,
any other multivariate statistic. Such numbers will depend on a chosen benchmark, and what is more,
they typically need careful checking because of asynchronous time-series: A mutual fund’s NAV that is
published with a delay may show little correlation with a stock-market index (when matched on time-
stamps), but that is only because of the ’attenuation bias’, which skews the correlation towards zero.

“PMwR” — 2023/10/19 — 8:37 — page 87 — #87

87

more than one calendar year; volatility will always be annualised and be computed
from monthly data (if possible); all numbers are rounded to a meaningful precision
(Ehrenberg, 1981).

summary(dax)

DAX
02 Jan 2014 ==> 30 Dec 2015 (505 data points, 0 NAs)

9400.04 10743

High 12374.73 (10 Apr 2015)
Low 8571.95 (15 Oct 2014)

Return (%) 6.9 (annualised)

Max. drawdown (%) 23.8
_ peak 12374.73 (10 Apr 2015)
_ trough 9427.64 (24 Sep 2015)
_ recovery (NA)
_ underwater now (%) 13.2

Volatility (%) 18.0 (annualised)
_ upside 14.4
_ downside 10.4

Monthly returns �������

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec YTD
2014 -1.0 4.1 -1.4 0.5 3.5 -1.1 -4.3 0.7 0.0 -1.6 7.0 -1.8 4.3
2015 9.1 6.6 5.0 -4.3 -0.4 -4.1 3.3 -9.3 -5.8 12.3 4.9 -5.6 9.6

For summaries of nav series, a method for toLatex can be used to fill LATEX-templates.
The package comes with a vignette that provides examples.

7.3 Drawdowns and Streaks

pmwr offers two functions that may provide insights into NAV series: drawdowns
and streaks. A vignette shows examples.

vignette("Drawdowns_streaks", package = "PMwR")

“PMwR” — 2023/10/19 — 8:37 — page 88 — #88

88 Chapter 7. Drawdowns and Streaks

7.3.1 Drawdown

Let the symbol 𝑣 be a time series of portfolio values, with observations indexed at
𝑡 = 0, 1, 2… 𝑇. The drawdown 𝐷 of this series at time 𝑡 is defined as

𝐷𝑡 = 𝑣max
𝑡 − 𝑣𝑡 (7.1)

in which 𝑣max
𝑡 is the running maximum, i.e. 𝑣max

𝑡 = max{𝑣𝑡′ | 𝑡′ ∈ [0, 𝑡]}.

Note that 𝐷 is a vector of length 𝑇 + 1, even though most of the time people care
most about its maximum value. Other functions may be computed to capture the
information in the drawdown vector, for example, the mean time underwater (i.e.
the average time elapsed between two consecutive values in 𝐷 that are sufficiently
close to zero), or the correlation between a portfolio’s drawdown and the drawdown
of an alternative asset, such as an index. The definition above gives 𝐷 in currency
terms. A percentage drawdown is often preferred, obtained by using the logarithm of
𝑣, or by dividing 𝐷𝑡 by 𝑣max

𝑡 .

In pseudocode, drawdown can be computed as follows.
1: set high = 𝑃1
2: set maxdown = 0
3: for 𝑡 = 2 ∶ length(𝑃) do
4: if 𝑃𝑡 > high then
5: high = 𝑃𝑡
6: else
7: compute underwater = 1 − 𝑃𝑡/high
8: if underwater > maxdown then
9: maxdown = underwater

10: end if
11: end if
12: end for
13: return maxdown

The function drawdowns (plural) in pmwr relies on the function drawdown (singular)
in the NMOF package.

NMOF::drawdown

function(v, relative = TRUE, summary = TRUE) {
cv <- cummax(v)
d <- cv - v
if (relative)

d <- d/cv
if (summary) {

troughTime <- which.max(d)
peakTime <- which.max(v[seq_len(troughTime)])
list(maximum = max(d),

high = v[peakTime],

“PMwR” — 2023/10/19 — 8:37 — page 89 — #89

89

high.position = peakTime,
low = v[troughTime],
low.position = troughTime)

} else
d

}
<bytecode: 0x561a349b1ba0 >
<environment: namespace:NMOF>

Drawdown statistics for a single series, such as starts of drawdowns and recovery
times, can be computed in a vectorized way. To illustrate this, start with a vector 𝐷
of drawdowns. Also, compute a lagged value D1.

x <- c(10, 9, 8, 9, 10, 9, 6, 10)
D <- cummax(x) - x
D

[1] 0 1 2 1 0 1 4 0

Note that a drawdown is defined as a positive number; it cannot get negative.

The table illustrates the strategy for computing starts and ends of drawdowns:

time D D1
𝑡1 0
𝑡2 1 0 DD starts

𝑡3 2 1
𝑡4 1 2
𝑡5 0 1 DD ends

𝑡6 1 0 DD starts

𝑡7 4 1
𝑡8 0 4 DD ends

0

A drawdown starts when 𝐷 > 0 and the previous value was 0. A drawdown can
never start in period 𝑡1.

D.starts <- c(FALSE, D[-length(D)] == 0 & D[-1] > 0)
which(D.starts)

[1] 2 6

A drawdown ends (is fully recovered) when the current value is~0 and the previous
value is > 0. A drawdown can never end in period~𝑡1.

D.ends <- c(FALSE, D[-1] == 0 & D[-length(D)] > 0)
which(D.ends)

“PMwR” — 2023/10/19 — 8:37 — page 90 — #90

90 Chapter 7. Drawdowns and Streaks

[1] 5 8

Remarks:

• If there are more starts than ends, the final drawdown has not been recovered.

• To collect statistics for the drawdowns, simply loop over the starts (with a po-
tential correction for a final, unrecovered drawdown).

• Depending on how the original series was computed, a small tolerance may be
more robust that requiring an exact~0 in~D for computing starts and ends.

Let us look at the five worst drawdowns of the DAX series.

dd <- drawdowns(dax)
dd[order(dd$max, decreasing = TRUE)[1:5],]

peak trough recover max
18 2015-04-10 2015-09-24 <NA> 0.23815388
9 2014-07-03 2014-10-15 2014-12-05 0.14532032
10 2014-12-05 2014-12-15 2015-01-16 0.07466056
4 2014-01-17 2014-03-13 2014-05-13 0.07443015
17 2015-03-16 2015-03-26 2015-04-10 0.02663112

7.3.2 Streaks

The function streaks returns a data-frame of uninterrupted up and down move-
ments.

streaks(dax, up = 0.1, down = -0.1,
initial.state = "up")

start end state return
1 2014-01-02 2014-07-03 up 0.066956
2 2014-07-03 2014-10-15 down -0.145320
3 2014-10-15 2015-04-10 up 0.443631
4 2015-04-10 2015-09-24 down -0.238154
5 2015-09-24 2015-11-30 up 0.207325
6 2015-11-30 2015-12-30 down -0.056159

Package plotseries https://github.com/enricoschumann/plotseries can be
used to plot streaks.

https://github.com/enricoschumann/plotseries

“PMwR” — 2023/10/19 — 8:37 — page 91 — #91

8 Scaling series

Visual comparisons of time-series are ubiquitous in finance.1 The function scale1
helps with scaling the levels of time-series so that is becomes easier to compare
them. It is a generic function; and PMwR provides methods for numeric vectors/matri-
ces, and for zoo and NAVseries objects.

8.1 Examples

To explain what the function does, we use two very short time-series: the values of
the DAX, the German stock-market index, and the REXP, a German government-
bond index, from 2 January and 8 January 2014 (just 5 trading days). We also com-
bine them into a matrix drax.

dax <- DAX[1:5,]
rexp <- REXP[1:5,]
drax <- cbind(dax, rexp)

Calling scale1 on dax is equivalent to dividing the whole series by its first element.

scale1(dax) == dax/dax[1]

[1] TRUE TRUE TRUE TRUE TRUE

Lest you skip the rest of the chapter: scale1 comes with several additional features.

It is common, too, to scale to a level of 100. We either multiply the whole series by
100, or use the level argument.

scale1(dax, level = 100)

1Transformating or scaling data are a key element of exploratory data analysis in general. See Tukey’s
EDA (1977). TODO: find H. Simon reference on scaling (taking reciprocal value). See also Schumann
(2013).

91

“PMwR” — 2023/10/19 — 8:37 — page 92 — #92

92 Chapter 8. Examples

[1] 100.00 100.37 100.30 101.13 101.04
attr(,"scale1_origin")
[1] 1

(The scale1_origin attribute will be explained shortly.)

If we give a matrix to scale1, the function scales each column separately.

scale1(drax, level = 100)

dax rexp
[1,] 100.00 100.00
[2,] 100.37 100.06
[3,] 100.30 100.23
[4,] 101.13 100.29
[5,] 101.04 100.28
attr(,"scale1_origin")
[1] 1

scale1 is a generic function; it works, for instance, with zoo objects.

library("zoo")
drax.zoo <- zoo(drax, as.Date(row.names(DAX)[1:5]))
scale1(drax.zoo, level = 100)

dax rexp
2014-01-02 100.00 100.00
2014-01-03 100.37 100.06
2014-01-06 100.30 100.23
2014-01-07 101.13 100.29
2014-01-08 101.04 100.28
attr(,"scale1_origin")
[1] 2014-01-02

plot(scale1(drax.zoo, level = 100),
plot.type = "single",
xlab = "",
ylab = "",
col = c("darkblue", "darkgreen"))

The argument when defines the origin.

scale1(drax, when = 3, level = 100)

dax rexp
[1,] 99.703 99.769
[2,] 100.076 99.830
[3,] 100.000 100.000
[4,] 100.829 100.062

“PMwR” — 2023/10/19 — 8:37 — page 93 — #93

93

Thu Fri Sat Sun Mon Tue Wed

100.0

100.2

100.4

100.6

100.8

101.0

Figure 8.1:
Scaled series:
Both dax and
rexp now start
at 100.

[5,] 100.741 100.049
attr(,"scale1_origin")
[1] 3

This origin is attached to the scaled series as an attribute scale1_origin. This is
useful if you want mark the start of the scaled series; for instance, in a plot with
abline.

With a zoo object, when should be compatible with the class of the object’s index.

scale1(drax.zoo, when = as.Date("2014-01-07"), level = 100)

dax rexp
2014-01-02 98.883 99.707
2014-01-03 99.253 99.768
2014-01-06 99.177 99.938
2014-01-07 100.000 100.000
2014-01-08 99.912 99.987
attr(,"scale1_origin")
[1] 2014-01-07

when also understands the keyword first.complete, which is actually the default,
and the keywords first and last. first.complete is useful when some series
have leading missing values.

drax[1:2, 1] <- NA
drax

dax rexp
[1,] NA 440.53
[2,] NA 440.79

“PMwR” — 2023/10/19 — 8:37 — page 94 — #94

94 Chapter 8. Examples

[3,] 9428.0 441.55
[4,] 9506.2 441.82
[5,] 9497.8 441.76

scale1(drax, level = 100) ## 'first.complete ' is the default

dax rexp
[1,] NA 99.769
[2,] NA 99.830
[3,] 100.00 100.000
[4,] 100.83 100.062
[5,] 100.74 100.049
attr(,"scale1_origin")
[1] 3

When the argument centre is TRUE, the mean return is subtracted from the returns.

scale1(drax.zoo, centre = TRUE)

dax rexp
2014-01-02 1.00000 1.00000
2014-01-03 1.00114 0.99991
2014-01-06 0.99779 1.00091
2014-01-07 1.00348 1.00083
2014-01-08 1.00000 1.00000
attr(,"scale1_origin")
[1] 2014-01-02

The default is to subtract the geometric mean: the series will have a growth rate of
zero; it will end where it started.

The argument scale takes a standard deviation and scales the returns to that stan-
dard deviation.

apply(returns(scale1(drax.zoo, scale = 0.02)), 2, sd)

dax rexp
0.02 0.02

This may create fairer comparisons, for instance, between fund prices that exhibit
very different volatilities. It can also help to visualise correlation.

It should be stressed that centre and scale change returns, but scale1 expects and
evaluates to levels (not returns).

The zoo method has a further argument that affects returns: inflate. To illustrate
its use, let us create a constant series.

“PMwR” — 2023/10/19 — 8:37 — page 95 — #95

95

z <- zoo(100,
seq(from = as.Date("2015-1-1"),

to = as.Date("2016-1-1"),
by = "1 day"))

head(z)
tail(z)

2015-01-01 2015-01-02 2015-01-03 2015-01-04 2015-01-05 2015-01-06
100 100 100 100 100 100

2015-12-27 2015-12-28 2015-12-29 2015-12-30 2015-12-31 2016-01-01
100 100 100 100 100 100

inflate should be a numeric value: the annual growth rate that is added to the
time-series’s return (or that is subtracted from it, if negative).

head(scale1(z, inflate = 0.02))
tail(scale1(z, inflate = 0.02))

2015-01-01 2015-01-02 2015-01-03 2015-01-04 2015-01-05 2015-01-06
1.0000 1.0001 1.0001 1.0002 1.0002 1.0003

2015-12-27 2015-12-28 2015-12-29 2015-12-30 2015-12-31 2016-01-01
1.0197 1.0198 1.0198 1.0199 1.0199 1.0200

8.2 Scaling a series: how it works

The previous section provided examples of scaling series. In this section, we are go-
ing to see how scale1 does its computations.

First, a series 𝑃 passed to scale1 is transformed into returns, 𝑅. The scale argu-
ment allows you to set a desired volatility for the series’s returns, defined as their
standard deviation. The computation uses the fact that multiplying a random vari-
able by a number 𝑏 changes its variance to 𝑏2 times its original variance. Hence,
scale1 divides the returns by the actual standard deviation and then multiplies
them by the desired one (i.e. the value passed via the scale argument).

Changing total return (or, equivalently, average return) is slightly more compli-
cated. Suppose we want to scale the total return of the series 𝑃 such that it equals
some target return 𝑟∗. Start with writing the total return as the product of single-
period returns.

𝑃1
𝑃0

𝑃2
𝑃1

⋯
𝑃𝑇
𝑃𝑇−1

=
𝑃𝑇
𝑃0

= (1 + 𝑟1)(1 + 𝑟2)(1 + 𝑟3)⋯ =
𝑇

∏
𝑡=1

1 + 𝑟𝑡 (8.1)

“PMwR” — 2023/10/19 — 8:37 — page 96 — #96

96 Chapter 8. Scaling a series: how it works

There clearly is an infinity of possible adjustments that would do the trick. We might,
for instance, change only 𝑃0 or 𝑃𝑇 so that the desired return is achieved.

But that is probably not what we want. A reasonable requirement is that the scal-
ing touches as few other statistical properties as possible. Adding a constant 𝑧 to the
return in every period does that: it does not change the volatility of the returns; nei-
ther does it affect linear or rank correlation of the returns with some other series. To
compute 𝑧, we need to solve the following equation:

(1 + 𝑟1 + 𝑧)(1 + 𝑟2 + 𝑧)(1 + 𝑟3 + 𝑧)⋯ = 1 + 𝑟∗ (8.2)

Alternatively, we may use logs.

∑
𝑖
log(1 + 𝑟𝑖 + 𝑧) = log(1 + 𝑟∗) (8.3)

This is an application for root-finding (see chapter 11 of Gilli, Maringer, and Schu-
mann, 2019), for which scale1 uses uniroot.

“PMwR” — 2023/10/19 — 8:37 — page 97 — #97

9 Analysing trades

For some strategies or trading approaches, we may prefer to analyse trades, not eq-
uity series. (A case in point are intraday strategies, which have no exposure over
night.) That is, we do not evaluate the strategy’s performance at pre-defined, usu-
ally equally-spaced points in time, but rather split the trading history into separate
trades.

9.1 Exposure

We have the following trades and times.

amount <- c(1, 3, -3, 1, -3, 1)
time <- c(0, 1, 3, 4, 7, 12)

The holding period (duration) of these trades can be computed so:

data.frame(position = cumsum(amount)[-length(amount)],
from = time[-length(time)],
to = time[-1L],
duration = diff(time))

position from to duration
1 1 0 1 1
2 4 1 3 2
3 1 3 4 1
4 2 4 7 3
5 -1 7 12 5

We can plot the exposure. See Figure 9.1.

plot(c(time[1], time), cumsum(c(0, amount)),
type = "s", xlab = "time", ylab = "position")

97

“PMwR” — 2023/10/19 — 8:37 — page 98 — #98

98 Chapter 9. Exposure

Figure 9.1:
Exposure at
different times.

0 2 4 6 8 10 12

−1

0

1

2

3

4

time

po
si

tio
n

Thus, we have had a position from time 0 to time 12 (hours into the trading day, say),
but its size varied. The function tw_exposure (time-weighted exposure) computes
the average absolute exposure.

tw_exposure(amount, time)

1.75

To give a simpler example: suppose we bought at the open of a trading day and sold
at noon. The average exposure for the day is thus half a contract.

amount <- c(1, -1, 0)
time <- c(0, 0.5, 1)
tw_exposure(amount, time)

0.5

If we bought at the open, went short at noon, and closed the position at the end of
the day, the average exposure would be one contract, since absolute position size is
relevant.

amount <- c(1, -2 , 1)
time <- c(0,0.5,1)
tw_exposure(amount, time)

1

Whether absolute exposure is used is controlled by an argument abs.value. Setting
it to FALSE can be useful to detect long or short biases.

tw_exposure(amount, time, abs.value = FALSE)

0

“PMwR” — 2023/10/19 — 8:37 — page 99 — #99

99

9.2 Splitting and rescaling

We have the following trades.

timestamp <- 1:3
amount <- c(-1, 2, -1)
price <- c(100, 99, 101)

Calling split_trades will return a list of two single trades. Each single trade, in
turn, is a list with components amount, price and timestamp.

split_trades(amount = amount,
price = price,
timestamp = timestamp ,
aggregate = FALSE)

[[1]]
[[1]]$amount
[1] -1 1

[[1]]$price
[1] 100 99

[[1]]$timestamp
[1] 1 2

[[2]]
[[2]]$amount
[1] 1 -1

[[2]]$price
[1] 99 101

[[2]]$timestamp
[1] 2 3

Note that the second transaction (buy 2 @ 99) has been split up: buying one contract
closes the first trade; the other contract opens the second trade. This splitting is use-
ful in its own right: there are accounting systems around that cannot handle a trade
that switches a position directly from long to short, or vice versa. Instead, the trade
needs first be closed (i.e. the net position becomes zero).

With argument aggregate set to TRUE, the function reconstructs the total series,
but with those trades splitted that change the position’s sign.

split_trades(amount, price, timestamp , aggregate = TRUE)

“PMwR” — 2023/10/19 — 8:37 — page 100 — #100

100 Chapter 9. Splitting and rescaling

$amount
[1] -1 1 1 -1

$price
[1] 100 99 99 101

$timestamp
[1] 1 2 2 3

Another example. We have the following trades and impose a limit that the maxi-
mum absolute exposure for the trader should only be 2.

timestamp <- 1:6
amount <- c(-1,-1,-1,1,1,1)
price <- c(100,99,98,98,99,100)
limit(amount, price, timestamp , lim = 2)

$amount
[1] -1 -1 1 1

$price
[1] 100 99 99 100

$timestamp
[1] 1 2 5 6

Scaling the trades.

scale_to_unity(amount)

[1] -0.333 -0.333 -0.333 0.333 0.333 0.333

Closing the trade at once.

close_on_first(amount)

[1] -1 -1 -1 3 0 0

“PMwR” — 2023/10/19 — 8:37 — page 101 — #101

10 Plotting irregularly-spaced
series during trading hours

10.1 An example

We have the following sample of prices of the Bund future contract, traded at the
Eurex in Germany.

times prices
2012-10-18 20:00:09 139.82
2012-10-18 20:01:11 139.82
2012-10-18 20:01:59 139.8
2012-10-18 20:01:29 139.81
2012-10-18 20:16:49 139.77
2012-10-18 20:50:49 139.85
2012-10-18 21:23:19 139.76
2012-10-18 21:41:39 139.76
2012-10-18 21:59:59 139.77
2012-10-19 09:16:10 139.8
2012-10-19 09:49:31 139.86
2012-10-19 21:12:49 140.46
2012-10-19 21:42:31 140.39
2012-10-22 08:45:15 140.14
2012-10-22 09:05:33 140.15

(You’ll find the code to generate those times in the code file for this chapter.)

Note that I have left the time zone to the operating system. Since my computer is
typically located in the time zone that the tz database (http://www.iana.org/
time-zones) calls ’Europe/Zurich’, the first time should be 2012-10-18 20:00:09.
If, for instance, your computer is in ’America/Chicago’ instead and you run the above

101

http://www.eurexchange.com
http://www.iana.org/time-zones
http://www.iana.org/time-zones

“PMwR” — 2023/10/19 — 8:37 — page 102 — #102

102 Chapter 10. An example

Figure 10.1:
Price plot on
a standard
x-axis..

Fri Sat Sun Mon

139.8

139.9

140.0

140.1

140.2

140.3

140.4

times

pr
ic

es

code, the first time would be 2012-10-18 13:00:09. Which is right: it is the cor-
rect time, only translated into Chicago local time.

A plot of price against time looks like this.

plot(times, prices, type = "s")

Such a plot is fine for many purposes. But the contract for which we have prices
is only traded from Monday to Friday, not on weekends, and it is traded only from
08:00 to 22:00 Europe/Berlin time. So the plot should omit those times at which no
trading takes place. This is what the function plot_trading_hours does.

tmp <- plot_trading_hours(x = prices, t = times,
interval = "1 sec",
labels = "day",
fromHHMMSS = "080000",
toHHMMSS = "220000",
type = "s")

What we need for such a plot is a function that maps actual time to a point on the
x-scale, while the y-scale stays unchanged. If we were talking only about days, not
times, we needed something like this:

day x-position mapped x-position
Thursday 1 1
Friday 2 2
Saturday 3 <removed>
Sunday 4 <removed>
Monday 5 3

“PMwR” — 2023/10/19 — 8:37 — page 103 — #103

103

139.8

139.9

140.0

140.1

140.2

140.3

140.4

19.10. 22.10.

Figure 10.2:
Price plot on
a standard
x-axis..

This mapping is what plot_trading_hours provides. And not much more: the de-
sign goal of the function is to make it as much as possible an ordinary plot; or more
specifically, to make it as similar as possible to the plot function. Indeed, plot_-
trading_hours calls plot with a small number of default settings:

list(type = "l", xaxt = "n", xlab = "", ylab = "")

These settings can all be overridden through the ... argument, which is passed to
plot. Note that we already set s as the plot’s type in the last code chunk. The only
required setting is suppressing the x-axis with setting xaxt to ’n’, because plot_-
trading_hours will create its own x-axis via a call to axis(1, ...). In case you
wish to use your own axis specification, either set do.plotAxis to FALSE or pass
settings to axis through the list axis1.par.

10.2 More examples

10.2.1 Value of plot_trading_hours

Like plot, plot_trading_hours is typically called for its side effect: creating a
plot. But it also returns useful information (invisibly, unless called with do.plot =
FALSE).

str(tmp)

List of 6
$ t : int [1:15] 1 63 81 111 1001 3041 4991 6091 7191 ...
$ x : num [1:15] 140 140 140 140 140 ...

“PMwR” — 2023/10/19 — 8:37 — page 104 — #104

104 Chapter 10. More examples

Figure 10.3:
Grid lines.

139.8

139.9

140.0

140.1

140.2

140.3

140.4

19.10. 22.10.

$ axis.pos : num [1:2] 7193 57594
$ axis.labels: chr [1:2] "19.10." "22.10."
$ timegrid : POSIXct[1:61527], format: "2012-10-18 20:00:09" ...
$ map : function (t)

This information can be used to add elements to plots. An example follows.

10.2.2 Adding grid lines

We can add grid lines with abline. The y-axis poses no special problem. The posi-
tions of the x-axis ticks are returned from plot_trading_hours.

tmp <- plot_trading_hours(x = prices, t = times,
interval = "1 sec",
labels = "day",
fromHHMMSS="080000",
toHHMMSS = "220000",
type = "s")

abline(h = axTicks(2), v = tmp$axis.pos,
col = "lightgrey", lty = "dotted")

If we want to mark a specific time, say 19 October, 13:10:23, we can use the function
map that the call to plot_trading_hours returns. We first create the specific time
with, for example, ISOdatetime or strptime.

Again, I do not specify a time zone since time zones
depend on the operating system. To reproduce the
example, you may use this representation:
##

“PMwR” — 2023/10/19 — 8:37 — page 105 — #105

105

139.8

139.9

140.0

140.1

140.2

140.3

140.4

19.10. 22.10.

Figure 10.4:
Grid lines.

mytime <- structure(1350645023,
class = c("POSIXct", "POSIXt"),
tzone = "")

mytime <- ISOdatetime(2012, 10, 19, 13, 10, 23)
mytime

[1] "2012-10-19 13:10:23 CEST"

Now we use map to translate this time into the appropriate x-position.

tmp <- plot_trading_hours(x = prices, t = times,
interval = "1 sec", labels = "day",
fromHHMMSS="080000",
toHHMMSS = "220000",
type = "s")

abline(h = axTicks(2), v = tmp$axis.pos,
col = "lightgrey", lty = "dotted")

abline(v = tmp$map(mytime)$t, col = "red")

The function map returns a list with two components, t and ix.

tmp$map(mytime)

$t
[1] 25816

$ix
[1] 1

The first component is the appropriate position on the x-axis; since it is a time it is
called t. The second component gives the subscripts to values that should actually

“PMwR” — 2023/10/19 — 8:37 — page 106 — #106

106 Chapter 10. Daily data

be plotted. As an example, suppose that we wish to plot points at several prices at
21:00:00 for several days.

moretimes <- structure(c(1350586800, 1350673200, 1350759600),
class = c("POSIXct", "POSIXt"), tzone = "")
##

moretimes <- ISOdatetime(2012, 10, 18:20, 21, 00, 00)
values <- seq(140, 140.20, length.out = length(moretimes))
data.frame(times = moretimes ,

weekday = format(moretimes , "%A"),
values)

times weekday values
1 2012-10-18 21:00:00 Thursday 140.0
2 2012-10-19 21:00:00 Friday 140.1
3 2012-10-20 21:00:00 Saturday 140.2

But 20 October 2012 is a Saturday, and so it does not appear in the plot.

tmp$map(moretimes)

$t
[1] 3592 53993

$ix
[1] 1 2

The values that should be plotted can conveniently be found by using ix.

values[tmp$map(moretimes)$ix]

[1] 140.0 140.1

10.3 Daily data

plot_trading_hours also handles data on a daily frequency. The function will
assume such a case if the timestamp is of class Date; it will then choose sensible de-
faults for the time-axis. In effect, the function will remove weekends and, if speci-
fied, holidays.

As an example, consider the first 10 observations of the DAX dataset.

x <- DAX[1:10,]
t <- as.Date(row.names(DAX)[1:10])
data.frame(t, x, weekday = weekdays(t))

“PMwR” — 2023/10/19 — 8:37 — page 107 — #107

107

Jan 02 Jan 06 Jan 10 Jan 14

9400

9450

9500

9550

9600

9650

9700

t

x

Figure 10.5:
daily.

If we plot these data, there will be a value plotted for 2014-01-04, as marked by the
vertical line.

plot(t, x, type = "l")
abline(v = as.Date("2014-01-04"))

That is despite the fact that this is a Saturday.

format(as.Date("2014-01-04"), "%A")

Saturday

This is not a bug: it is the default behaviour of plot. Saturday’s value results from
an interpolation. plot_trading_hours instead ignores such nonexisting dates.

plot_trading_hours(x, t)

“PMwR” — 2023/10/19 — 8:37 — page 108 — #108

108 Chapter 10. Daily data

Figure 10.6:
daily.

9400

9450

9500

9550

9600

9650

9700

03.01. 07.01. 09.01. 13.01. 15.01.

“PMwR” — 2023/10/19 — 8:37 — page 109 — #109

11 Valuation

Computing the value of a position is, in principle, straightforward: multiply the
prices of assets by the numbers of contracts you hold and sum the resulting values.

This immediately leads to three questions:

1. What is the price?

2. What is a contract?

3. Are we allowed to sum?

11.1 Prices

Valuing an instrument can mean using either a market price or a theoretical price. In
the discussion that follows, I will assume that we already have prices (or net-present
values).

109

“PMwR” — 2023/10/19 — 8:37 — page 110 — #110

110 Chapter 11. Prices

“PMwR” — 2023/10/19 — 8:37 — page 111 — #111

12 Other Tools

12.1 Dividend adjustments

The function div_adjust corrects price series for dividends. It is meant as a low-
level function and is implemented to work on numeric vectors. Consider a hypothet-
ical price series x, which goes ex-dividend at time 3.

x <- c(9.777, 10.04, 9.207, 9.406)
div <- 0.7
t <- 3

The default for div_adjust is to match the final price.

div_adjust(x, t, div)

[1] 9.086185 9.330603 9.207000 9.406000

If you prefer a correction that matches the first price, set argument backward to
FALSE.

div_adjust(x, t, div, backward = FALSE)

[1] 9.77700 10.04000 9.90700 10.12113

12.2 Stocks splits

The function split_adjust handles stock splits. It is implemented to work on nu-
meric vectors.

111

“PMwR” — 2023/10/19 — 8:37 — page 112 — #112

112 Chapter 12. Validating security identification numbers

12.3 Treasuries quotes

US treasury bonds are often quoted in 1/32nds of points. For instance, the price
110'030 would mean 110+3/32.

The function quote32 lets you parse and ‘pretty-print’ such prices.

quote32(c("110-235", "110-237"))

[1] 110-23+ 110-23¾

Internally, quote32 will store the prices as numeric values: the fractions are only
used for printing.

as.numeric(quote32(c("110-235", "110-237")))

[1] 110.73 110.74

dput(quote32(c("110-235", "110-237")))

structure(c(110.734375, 110.7421875),
handle = c(110, 110),
ticks = c(23, 23),
fraction = c(2, 3),
class = "quote32")

12.4 Validating security identification numbers

An ISIN, which stands for International Securities Identification Number, uniquely1

identifies a security.

is_valid_ISIN(c("DE0007236101", ## Siemens
"DE0007236102")) ## last digit changed

[1] TRUE FALSE

There is a function is_valid_SEDOL too.
1More or less uniquely, depending on the definition of security. ISINs are widely used for equities, in par-
ticular in European markets. But note that ISINs do not contain information about the trading venue.
Also, for derivatives, an ISIN may not uniquely identify the contract: for instance, Euro-Bund Futures,
traded at the Eurex, have a single ISIN for all maturities.

“PMwR” — 2023/10/19 — 8:37 — page 113 — #113

113

12.5 Price tables

A pricetable is a matrix of prices, with some added functionality for subsetting.

12.6 Trees

To normal people, a tree consists of a trunc, branches and leaves. To people who do
graph theory, a tree is a connected graph with only one path between any two nodes.

Trees are useful to represent hierachies – just think of a file tree. For portfolios, a
tree can be used to indicate groupings, such as countries or industries. (See argu-
ment account in function position.)

“PMwR” — 2023/10/19 — 8:37 — page 114 — #114

114 Chapter 12. Trees

“PMwR” — 2023/10/19 — 8:37 — page 115 — #115

13 FAQ/ FRC (Frequently-required
computations)

I have a list of timestamped trades and I need to compute P/L between two points in
time, for instance between yesterday’s evening close and now (intraday).

Call the points in time 𝑡0 and 𝑡1. The easiest case is if there were no positions at both
𝑡0 and 𝑡1. In that case, create a journal of your trades, and call pl.

If there were positions, you will need the valuation prices for all instruments with
positions at both points in time. Then, you can use pl; see arguments initial.po-
sition and vprice.

Alternatively, you would arrive at the P/L as follows:

1. Compute the position at 𝑡0 and make it a journal 𝐽0. The prices need to be the
valuation prices. (That is, pretent you opened the position at their valuation
prices at 𝑡0.)

2. Take all transactions at 𝑡 > 𝑡0 and 𝑡 ≤ 𝑡1 and put them into a journal 𝐽.

3. Compute the position at 𝑡1 make it a journal 𝐽1, and multiply all amounts by
-1. The prices need to be the valuation prices. (That is, pretent you closed the
position at their valuation prices at 𝑡1.)

4. Combine 𝐽0, 𝐽, and 𝐽1 and compute the P/L.

How can I compute portfolio returns when I don’t have prices, but only returns of the
assets?

115

“PMwR” — 2023/10/19 — 8:37 — page 116 — #116

116 Chapter 13. FAQ/ FRC (Frequently-required computations)

Compute artificial prices; e.g. using something like

cumprod(c(1, 1 + r))

Then use returns.

I have a portfolio with constant weights. How to compute its returns when it is rebal-
anced at specific times?

Compute artificial prices, and then use returns: see arguments weights and re-
balance.when. See Section Portfolio returns.

I have a journal of trades and want to compute the number of trades per day?

Use tapply. If the timestamp inherits from class Date or can be coerced to Date,
the following line will compute the number of trades per day.

tapply(J, as.Date(J$timestamp), length)

I have a list of trades: instrument, side (buy/sell), quantity, when and at what price.
How to compute the profit and loss for each?

See pl.

I have a list of trades in an instrument and want to plot these trades against the price
of the traded instrument.

Use pl; in particular, pass the prices with vprice.

I have a signal series (+1, 0, 0, +1, …), and need to transform it into a profit-and-loss
series.

If these are positions, pass the signals to btest and access them with signals[Time()].

“PMwR” — 2023/10/19 — 8:37 — page 117 — #117

117

I need to determine the month-to-date profit-and-loss.

1. compute position on last day of last month

2. make journal from position (add prices)

3. combine with journal since month start

4. use ~pl on all instruments

btest: I want to print my current P/L in every period.

Use print.info.

btest: I invest in assets that pay accrued interest.

Directly work with the dirty prices. If the signals depend on clean prices, pass them
as extra information and access them with clean_price[Time()]. Alternatively,
work with the clean prices, and use cashflow to add the accrued interest to the cash
account.

btest: Can I rebalance more frequently than I compute a signal?

You can, but it does not make sense in the standard setup. That is, no rebalancing
will take place, even if you instruct btest to do so. The reason is that a signal com-
putes a suggested position (in units of the instrument); once this position has been
built up, no more trading is required. This is even true when using weights: The
argument convert.weights is a convenience that converts weights into a suggested
position; btest does not store these weights, only the suggested position.

“PMwR” — 2023/10/19 — 8:37 — page 118 — #118

118 Chapter 13. FAQ/ FRC (Frequently-required computations)

“PMwR” — 2023/10/19 — 8:37 — page 119 — #119

14 Appendix: Classes and data
structures

The following classes are implicitly defined (i.e. they are S3 classes):

journal keeps transactions. Internally, a object of class journal is named list of
atomic vectors.

position the numerical positions of different accounts/instruments at specific points
in time. Always stored in a numeric matrix with attributes timestamp and in-
strument; points in time are in rows, instruments in columns.

period returns numeric vector (potentially a matrix) with attributes timestamp and
period. The class is called p_returns

instrument term sheet (description etc); it does know nothing about market data –
not yet implemented

cashflow internal – not yet implemented

NAVseries store a time-series of net asset values

pricetable a matrix of NAVs (or prices); each column corresponds to one asset. Ad-
ditional attributes instrument and timestamp. Often, pricetables will be created
corresponding to positions.

119

“PMwR” — 2023/10/19 — 8:37 — page 120 — #120

120 Chapter 14. Appendix: Classes and data structures

“PMwR” — 2023/10/19 — 8:37 — page 121 — #121

15 Appendix: Notes for devel-
opers

15.1 Methods for returns

Methods are responsible for ’stripping’ the input down do x and t, calling ’returns.default’
or some other method, and then to re-assemble the original class’s structure. When
period is not specified, methods should keep timestamp information for themselves
and not pass it on. That is, returns.default should only ever receive a time-
stamp when period is specified.

121

“PMwR” — 2023/10/19 — 8:37 — page 122 — #122

122 Chapter 15. Methods for returns

“PMwR” — 2023/10/19 — 8:37 — page 123 — #123

16 Appendix: R and package ver-
sions used

R version 4.2.2 Patched (2022-11-10 r83330)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 22.10

Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/openblas-openmp/libblas.so.3
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-openmp/libopenblasp -r0.3.20.so

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_GB.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_GB.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_GB.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] stats graphics grDevices utils datasets methods
[7] base

other attached packages:
[1] rbenchmark_1.0.0 orgutils_0.5-0 NMOF_2.8-0
[4] zoo_1.8-11 PMwR_0.19-0

loaded via a namespace (and not attached):
[1] datetimeutils_0.6-0 compiler_4.2.2 tools_4.2.2
[4] parallel_4.2.2 fastmatch_1.1-3 grid_4.2.2
[7] textutils_0.3-1 lattice_0.20-45

123

“PMwR” — 2023/10/19 — 8:37 — page 124 — #124

124 Chapter 16. Appendix: R and package versions used

“PMwR” — 2023/10/19 — 8:37 — page 125 — #125

Bibliography

[1] Jon A. Christopherson, David R. Cariño, and Wayne E. Ferson. Portfolio Perfor-
mance Measurement and Benchmarking. McGraw-Hill, 2009.

[2] Dirk Eddelbuettel. nanotime: Nanosecond-Resolution Time for R. R package ver-
sion 0.1.0. 2017. url: https://CRAN.R-project.org/package=nanotime.

[3] A.S.C. Ehrenberg. “The Problem of Numeracy”. In: American Statistician 35.2
(1981), pp. 67–71. doi: 10.2307/2683143.

[4] Bruce J. Feibel. Investment Performance Measurement. Wiley, 2003.

[5] Mike Gancarz. Linux and the Unix Philosophy. Digital Press, 2003.

[6] Manfred Gilli, Dietmar Maringer, and Enrico Schumann. Numerical Methods
and Optimization in Finance. 2nd ed. Elsevier/Academic Press, 2019. doi: 10.
1016/C2017-0-01621-X. url: http://nmof.net.

[7] Eric Steven Raymond. The Art of Unix Programming. Addison Wesley, 2003.

[8] Enrico Schumann. Numerical Methods and Optimization in Finance (NMOF) –
Manual (Package version 2.4-2). 2011–2021. url: http://enricoschumann.
net/NMOF.htm#NMOFmanual.

[9] Enrico Schumann. “Two pitfalls in comparing financial time-series”. available
from http://enricoschumann.net. 2013.

125

https://CRAN.R-project.org/package=nanotime
https://doi.org/10.2307/2683143
https://doi.org/10.1016/C2017-0-01621-X
https://doi.org/10.1016/C2017-0-01621-X
http://nmof.net
http://enricoschumann.net/NMOF.htm#NMOFmanual
http://enricoschumann.net/NMOF.htm#NMOFmanual
http://enricoschumann.net

“PMwR” — 2023/10/19 — 8:37 — page 126 — #126

Index

.returns (function), 39

aggregate.journal(method), 24
annualised returns, 42
as.data.frame.journal (method), 23
as.journal (function), 12
as.NAVseries(function), 86

backtesting
delaying signals, 66
frequency, 54

btest (R function in package PMwR), 47
btest

frequency, 54
burn-in, 49

C, 22

datetimeutils (R package), 7, 51
DAX, 37
DAX (dataset), 91
distributed computing, 6
div_adjust (R function), 45
drawdown, 88
drawdown (R function in package NMOF),

7

Emacs, 5

French, Kenneth, 69
functional programming, 6

GitHub, 6
GitLab, 6

inflate (argument to scale1), 94

is_valid_ISIN (function), 112
is_valid_SEDOL (R function), 112
ISIN, 112

journal
aggregating journals, 23
backtest, 54
combining journals, 16
comparison with data-frame, 11
concatenating journals, 16
definition, 11
empty journals, 12, 13
number of transactions, 16
print journals (print method), 15
sorting journals, 16
splitting, 19
subsetting, 17

journal (function), 13

lookthrough, 82

mailtools (R package), 8
memoisation, 7
methods

getting help, 15

nanotime (R package), 15
NAV series

summary, 86
NAVseries (function), 86
NMOF (R package), 81
NMOF (R package), 81
nth_day (R function in package date-

timeutils), 20, 51

Org-mode, 5

126

“PMwR” — 2023/10/19 — 8:37 — page 127 — #127

127

org_journal (R function), 14
overnight gap, 102

Packages, see R packages
Perl, 22
pl (function), 27
plot_trading_hours (function), 102
position

compute from journal, 19
directly declare a position, 77

position (R function), 113
position (function), 19
profit/loss

over specific period of time, 33–34
with open trades, 32

quote32 (function), 112

R packages
NMOF, 81
datetimeutils, 7, 51
mailtools, 8
nanotime, 15
textutils, 8
tsdb, 8
xts, 40
zoo, 6, 39

rebalance
a portfolio, 75
during backtest, 51

rebalance (function), 75
replace_weight (function), 82
returns

mtd, 43
ytd, 43
annualised, 42
for calendar period, 40
monthly, 40
print method, 40
rolling returns, 39
specifying a lag, 39
time-weighted, 45
when position is rebalanced periodi-

cally, 43
with external cashflows, 45

.returns (function), 39
returns (function), 37
REXP, 37
REXP (dataset), 91

scale1 (function), 91
Sourceut, 6
streaks in time-series, 90
Sweave

preparing returns tables, 42

TAopt (R function in package NMOF), 81
tapply, 24
textutils (R package), 8
time-weighted exposure, 97
time-weighted returns, 45
timezones, 101, 104
toLatex (function)

summary.NAV method, 87
toOrg (function), 32
trading hours, 102
tsdb (R package), 8
tz database, 101

uniroot (function), 96

xts (R package), 40

zoo (R package), 6, 39
zoo

NAV series, 85
returns calculation, 39

	Introduction
	About PMwR
	Principles
	Other packages
	Setting up R
	Typographical conventions

	Keeping track of transactions: journals
	Overview
	Fields
	Creating and combining journals
	Selecting transactions
	Computing balances
	Computing positions from journals
	Algorithms for computing balances

	Aggregating and transforming journals

	Computing profit and loss
	Simple cases
	Total profit/loss
	P/L over time

	More-complicated cases

	Computing returns
	Simple returns
	Holding-period returns
	Portfolio returns
	Return contribution
	External Cashflows

	Backtesting
	Decisions
	Data structure
	Function arguments
	Available information within functions
	Function arguments

	Examples: A single asset
	A useless first example
	More-useful examples

	Examples: Several assets
	A simple example

	Miscellaneous
	Handling missing values
	Distributing backtest computations
	Remembering an entry price
	Delaying signals
	Specifying when to compute a signal and trade
	Writing a log
	Selecting parameters: calling btest recursively
	Time-varying asset universes

	Rebalancing a portfolio
	Usage with unnamed vectors
	Usage with named vectors
	Usage with positions
	Constructive methods: An example
	Algorithms
	Substituting a basket by its components

	Summarising portfolio time-series
	Creating NAV series
	Summarising NAV series
	Drawdowns and Streaks
	Drawdown
	Streaks

	Scaling series
	Examples
	Scaling a series: how it works

	Analysing trades
	Exposure
	Splitting and rescaling

	Plotting irregularly-spaced series during trading hours
	An example
	More examples
	Value of plot_trading_hours
	Adding grid lines

	Daily data

	Valuation
	Prices

	Other Tools
	Dividend adjustments
	Stocks splits
	Treasuries quotes
	Validating security identification numbers
	Price tables
	Trees

	FAQ/FRC (Frequently-required computations)
	Appendix: Classes and data structures
	Appendix: Notes for developers
	Methods for returns

	Appendix: R and package versions used

