
Portfolio Management with R

Enrico Schumann

15 October 2017

Contents

1 Introduction 7
1.1 About PMwR . 7
1.2 Principles . 8

1.2.1 Small . 8
1.2.2 Flexible and general . 8
1.2.3 Functional . 8
1.2.4 Matching by name . 8
1.2.5 Vectorisation . 9

1.3 Other packages . 9
1.3.1 datetimeutils . 9
1.3.2 textutils . 9
1.3.3 tsdb . 10

1.4 Setting up R . 10

2 Keeping track of transactions: journals 11
2.1 Overview . 11
2.2 Creating and combining journals . 12
2.3 Selecting transactions . 16
2.4 Computing balances . 18

2.4.1 position . 18
2.4.2 Algorithms for computing balances . 20

2.5 Aggregating journal information . 21

3 Computing profit and loss 23
3.1 Simple cases . 23

3.1.1 Total P/L . 23
3.1.2 P/L over time . 30

3.2 More-complicated cases . 32

4 Computing returns 33
4.1 Simple returns . 33
4.2 Holding-period returns . 36
4.3 Returns when weights are fixed . 39
4.4 Return contribution . 41
4.5 Returns when there are external cashflows . 42

3

Contents

5 Backtesting 45
5.1 Decisions . 45
5.2 Data structure . 46
5.3 Function arguments . 47

5.3.1 Available information within functions 47
5.3.2 Function arguments . 48

5.4 Examples: A single asset . 49
5.4.1 A useless first example . 49
5.4.2 More-useful examples . 53

5.5 Examples: Several assets . 61
5.5.1 A simple example . 61

5.6 Common tasks . 63
5.6.1 Remembering an entry price . 63
5.6.2 Delaying signals . 63
5.6.3 Specifying when to compute a signal and trade 63
5.6.4 Writing a log . 64
5.6.5 Selecting parameters: calling btest recursively 64

6 Rebalancing a portfolio 67
6.1 Usage with unnamed vectors . 67
6.2 Usage with named vectors . 68
6.3 Optimisation . 69
6.4 Substituting a basket by its components . 71

7 Summarising portfolio time-series 73
7.1 Creating NAVseries . 73
7.2 Methods . 74

8 Analysing trades 77
8.1 Exposure . 77
8.2 Splitting and rescaling . 79

9 Scaling series 83
9.1 Examples . 83
9.2 Scaling a series . 88

10 Plotting irregularly-spaced series during trading hours 91
10.1 An example . 91
10.2 More examples . 94

10.2.1 Value of plot_trading_hours . 94
10.2.2 Adding grid lines . 94

11 Other Tools 99
11.1 Dividend adjustments . 99
11.2 Stocks splits . 99

4

Contents

11.3 Treasuries quotes . 99
11.4 Validating ISINs . 100
11.5 Price tables . 100
11.6 Trees . 100

12 FAQ/ FRC
(Frequently-required computations) 101

13 Appendix: Classes and data structures 105

14 Appendix: Notes for developers 107
14.1 Methods for returns . 107

15 Appendix: R and package versions used 109

5

1 Introduction

1.1 About PMwR

This manual describes how to use the pmwr package. The aim of pmwr is to provide a small
set of reliable, efficient and convenient tools that help in processing and analysing trade and
portfolio data. The package does not provide a complete application that could be used ‘as is’;
rather, the package provides building blocks for creating such an application.

pmwr grew out of various pieces of software that I have written since 2008, first at the Univer-
sity of Geneva, later during my work at financial firms.

The package is currently under active development and changes frequently. This is mainly
because the code has been written over many years and is in need of being groomed for general
use. Consequently, this manual will change as frequently as the package.1 I am grateful for
comments and suggestions.

The latest version of the package is available from http://enricoschumann.net/R/packages/

PMwR/index.htm. To install the package from within R, type

install.packages("PMwR",

type = "source",

repos = c('http://enricoschumann.net/R',

getOption('repos ')))

to download and install it. The package depends on several other packages, which are auto-
matically obtained from the same repository and from cran. The source code is also pushed
to a public repository at https://github.com/enricoschumann/PMwR.

There is currently no automatic build process for Windows. Recent versions of the package
(since 0.3-4) are pure R code and can be built without any prerequisites except an R installation;
older versions contained C code, so you needed to have the necessary tool chain installed
(typically via Rtools). If you have problems building the package for Windows, please contact
me and I will provide you with a Windows version.

1The manual itself is written in Org mode. The complete tangled code is available from the website.

7

http://enricoschumann.net/R/packages/PMwR/index.htm
http://enricoschumann.net/R/packages/PMwR/index.htm
https://github.com/enricoschumann/PMwR
https://cran.r-project.org/bin/windows/Rtools/
http://orgmode.org/

1 Introduction

1.2 Principles

1.2.1 Small

The aim of pmwr is to provide a small set of tools. This comes at the price: interfaces may be
more complicated. But with few functions, it is easier to remember a function name or to find
it in the first place.

1.2.2 Flexible and general

pmwr aims to be open to different types of instruments, different timestamps, etc.

1.2.3 Functional

With properly designed functions, it is possible to ignore how a job is done; knowing what is
done is sufficient.

(K&R, chapter 1)

There are many good reasons for using functions.

• clearer code; easier to reuse; easier to maintain

• provide a clear view of what is needed for a specific computation; thus, they help with
parallel/distributed computing

• easier to test functionality

• input data is not changed

• clean workspace after function call has ended

(There are more advantages, actually; such as the application of techniques such as memoisa-
tion.)

Computations provided by pmwr do not – for developers: should not – rely on global option-
s/settings. The exception are functions that are used interactively, which essentially means
print methods. (In scripts or methods, you should prefer cat.)

1.2.4 Matching by name

Whenever possible and intuitive, data should be matched by name, not by position. This is
most natural with vectors that store scalar information about instruments, such as prices or
multipliers. In such cases, data input such as prices) is preferred in the form of named vectors.

8

1.3 Other packages

1.2.5 Vectorisation

Functions should do vectorisation when it is beneficial in terms of speed or clarity of code.
Likewise, functions should work on matrices directly (typically columnwise) when it simplifies
or speeds up things. Otherwise, applying the function (i.e. looping) should be left to the user.

An example may clarify this: drawdown is internally computed through cumsum, so it will be fast
for a single vector. But for a matrix of time series, it would need a loop, which will be left to
the user. On the other hand, returns can be computed very efficiently for a matrix.

1.3 Other packages

Several other packages originated from pmwr; initially, much of their code had been part of
pmwr.

1.3.1 datetimeutils

From the DESCRIPTION file:

Utilities for handling dates and times, such as selecting particular days of the week or month,
formatting timestamps as required by RSS feeds, or converting timestamp representations of
other software (such as ’MATLAB’ and ’Excel’) to R. The package is lightweight (no depen-
dencies, pure R implementations) and relies only on R’s standard classes to represent dates and
times (’Date’ and ’POSIXt’); it aims to provide efficient implementations, through vectorisation
and the use of R’s native numeric representations of timestamps where possible.

https://github.com/enricoschumann/datetimeutils

http://enricoschumann.net/R/packages/datetimeutils/

1.3.2 textutils

From the DESCRIPTION file:

Utilities for handling character vectors that store human-readable text (either plain or with
markup, such as HTML or LATEX). The package provides, in particular, functions that help with
the preparation of plain-text reports (e.g. for expanding and aligning strings that form the
lines of such reports); the package also provides generic functions for transforming R objects
to HTML and to plain text.

https://github.com/enricoschumann/textutils

http://enricoschumann.net/R/packages/textutils

9

https://github.com/enricoschumann/datetimeutils
http://enricoschumann.net/R/packages/datetimeutils/
https://github.com/enricoschumann/textutils
http://enricoschumann.net/R/packages/textutils

1 Introduction

1.3.3 tsdb

From the DESCRIPTION file:

A terribly-simple data base for time series. All series are saved as csv files. The package offers
utilities for saving files in a standardised format, and for retrieving and joining data.

1.4 Setting up R

In this manual, all R output will be presented in English. In case you run R in a different locale,
but want to receive messages in English, type this:

Sys.setenv(LANGUAGE = "en")

10

2 Keeping track of transactions: journals

2.1 Overview

The ultimate basis of many financial computations are lists of transactions. And so many of
the tools that the pmwr package provides take lists of transactions as input.

Conceptually, you can think of such lists as dataframes, but pmwr provides an S3 class journal
for handling them. A journal is a list of atomic vectors, to which a class attribute is attached.
Such a list is created through the function journal. Methods should not rely on this list being
sorted in any particular way: components of a journal should always be retrieved by name,
never by position. (In this respect a journal differs from a dataframe, for which we can mean-
ingfully refer to the n-th column.) A journal’s components, such as amount or timestamp, are
called fields in this manual.

The simplicity of the class is intended, because it is meant for interactive analyses. The user
may – and is expected to – dissect the information in a journal at will; such dissections include
removing the class attribute.

What is actually stored in a journal is up to the user. A number of fields are, however, required
for certain operations and so it is recommended that they be present:

amount The notional amount that is transacted. amount is, in a way, the most important prop-
erty of a journal. When functions compute something from the journal (the number of
transactions, say), they will look at amount.

timestamp When did the transaction take place? A numeric or character vector; should be
sortable.

price Well, price.

instrument Description of the financial instrument; typically an identifier, a.k.a. ticker or sym-
bol. That is, a string or perhaps a number; but not a more-complex object (recall that
journals are lists of atomic vectors).

id A transaction identifier, possibly but not necessarily unique.

account Description of the account.

... other fields. They must be named, as in fees = c(1,2,1)

11

2 Keeping track of transactions: journals

All fields except amount can be missing. Such missing values will be ‘added back’ as NA with
the exception of id and account, which will be NULL. To be clear: amount could be a vector with
only NA values in it, but amount cannot be left out when the journal is created. (This will become
clearer with the examples below.)

A journal may have no transactions at all in it. In such a case all fields have length zero,
e.g. amount would be numeric(0) and so on. Such empty journals may be created by saying
journal() or by coercing a zero-row data frame to a journal, via a call to as.journal.

Transactions in a journal may be organised in hierarchies, such as

account => subaccount => subsubaccont => ... => instrument

This is useful and necessary when you have traded stock XY for different accounts, for in-
stance, or as part of different strategies. Such a hierarchy may be completely captured in the
instrument field, by concatenating account/instrument using a specific separator pattern such
as ::.1 The result would be ’namespaced’ instruments such as Pension::Equities::AMZN. Al-
ternatively, part of the hierarchy may be stored in the account field.

2.2 Creating and combining journals

The function journal creates journal objects. See ?journal for details about the function and
about methods for journal objects.

At its very minimum, a journal must contain amounts of something.

J <- journal(amount = c(1, 2, -2, 3))

J

amount

1 1

2 2

3 -2

4 3

4 transactions

Actually, that is not true. On occasion it is useful to create an empty journal, one with no
entries at all. You can do so by saying journal(), without any arguments.

journal ()

1This notation is inspired by the syntax of ledger files. See http://www.ledger-cli.org/ .

12

http://www.ledger-cli.org/

2.2 Creating and combining journals

no transactions

To see the current balance, which is nothing more than the sum over all amounts, you can use
position.

position(jnl)

4

Only providing amounts is, admittedly, not overly useful. You can keep track of positions, true;
but a journal implies chronological information, that is, flows. (As opposed to a ledger, which
gives you positions, or stocks.)

When you make sure that the amounts are actually sorted in time, then you can at least track
positions over time. (But nothing in the data structure that we created above could make sure
that transactions really are sorted.)

Suppose you wanted to note how many bottles of milk and wine you have stored in your
basement. Whenever you add to your stock, you have a positive amount; whenever you retrieve
bottles, you have a negative amount. Then, by keeping track of transactions, you may not have
to take stock (apart, perhaps, from occasional checking that you did not miss a transaction), as
long as you keep track of what you put into your cellar and what you take out.

There may be some analyses you can do on flows alone: perhaps checking your drinking habits
for patterns, such as slow accumulation of wine, followed by rapid consumption; or the other
way around.

But typically, you will want to analyse your transactions later, and then the more information
you record about them – when, what, at what price, etc. –, the better. Journals allow you to
store such information. To show how they are used, let us switch to a financial example.

J <- journal(timestamp = as.Date("2012 -01 -01") + 0:3,

amount = c(1, 2, -2, 5),

instrument = c("EUR", "EUR", "CHF", "CHF"),

comment = c("initial balance", "",

"transfer", ""))

J

instrument timestamp amount comment

1 EUR 2012 -01 -01 1 initial balance

2 EUR 2012 -01 -02 2

3 CHF 2012 -01 -03 -2 transfer

4 CHF 2012 -01 -04 5

4 transactions

13

https://en.wikipedia.org/wiki/General_journal
https://en.wikipedia.org/wiki/Ledger

2 Keeping track of transactions: journals

A print method defines how a journal is displayed. See ?print.journal for details. In gen-
eral, you can always get help for methods for generic functions by saying ?<generic_func-

tion>.journal, e.g. ?print.journal or ?as.data.frame.journal.

print(J, max.print = 2, exclude = "instrument")

timestamp amount comment

1 2012 -01 -01 1 initial balance

2 2012 -01 -02 2

[....]

4 transactions

A str method shows the fields in the journal.

str(J)

'journal ': 4 transactions

$ instrument: chr [1:4] "EUR" "EUR" "CHF" "CHF"

$ timestamp : Date [1:4], format: "2012 -01 -01" ...

$ amount : num [1:4] 1 2 -2 5

$ price : logi [1:4] NA NA NA NA

$ comment : chr [1:4] "initial balance" "" "transfer" ""

You may notice that the output is similar to that of a data.frame or list. That is because J is a
list internally, with a class attribute. Essentially, it is little more than this:

list(timestamp = as.Date("2012 -01 -01") + 0:3,

amount = c(1, 2, -2, 5),

instrument = c("EUR", "EUR", "CHF", "CHF"),

comment = c("initial balance", "", "transfer", ""))

(But note that journal silently added a price field, even though we did not specify one.)

In the example, the timestamps are of class Date. But essentially, any vector of mode character
or numeric can be used, for instance POSIXct, or other classes. Here is an example that uses
the nanotime package (Eddelbuettel, 2017).

require("nanotime")

journal(amount = 1:3,

timestamp = nanotime(Sys.time ()) + 1:3)

timestamp amount

1 1501705632950756001 1

2 1501705632950756002 2

14

2.2 Creating and combining journals

3 1501705632950756003 3

3 transactions

Journals can be combined with c.

J2 <- J

J2$fees <- rep (0.1 ,4)

c(J, J2)

instrument timestamp amount comment fees

1 EUR 2012 -01 -01 1 initial balance NA

2 EUR 2012 -01 -02 2 NA

3 CHF 2012 -01 -03 -2 transfer NA

4 CHF 2012 -01 -04 5 NA

5 EUR 2012 -01 -01 1 initial balance 0.1

6 EUR 2012 -01 -02 2 0.1

7 CHF 2012 -01 -03 -2 transfer 0.1

8 CHF 2012 -01 -04 5 0.1

8 transactions

But we wanted the combined journal sorted by date.

sort(c(J, J2))

instrument timestamp amount comment fees

1 EUR 2012 -01 -01 1 initial balance NA

2 EUR 2012 -01 -01 1 initial balance 0.1

3 EUR 2012 -01 -02 2 NA

4 EUR 2012 -01 -02 2 0.1

5 CHF 2012 -01 -03 -2 transfer NA

6 CHF 2012 -01 -03 -2 transfer 0.1

7 CHF 2012 -01 -04 5 NA

8 CHF 2012 -01 -04 5 0.1

8 transactions

We can also sort by some other field, such as amount.

sort(c(J, J2), by = "amount", decreasing = TRUE)

instrument timestamp amount comment fees

1 CHF 2012 -01 -04 5 NA

15

2 Keeping track of transactions: journals

2 CHF 2012 -01 -04 5 0.1

3 EUR 2012 -01 -02 2 NA

4 EUR 2012 -01 -02 2 0.1

5 EUR 2012 -01 -01 1 initial balance NA

6 EUR 2012 -01 -01 1 initial balance 0.1

7 CHF 2012 -01 -03 -2 transfer NA

8 CHF 2012 -01 -03 -2 transfer 0.1

8 transactions

2.3 Selecting transactions

In an interactive session, you can use subset to select particular transactions.

subset(J, amount > 1)

instrument timestamp amount comment

1 EUR 2012 -01 -02 2

2 CHF 2012 -01 -04 5

2 transactions

With subset, you need not quote the expression that selects trades and you can directly access
a journal’s fields. Because of the way subset evaluates its arguments, it should not be used
within functions. (See the Examples section in ?journal for what can happen then.)

More generally, to extract or change a field, use its name, either through the $ operator or
double brackets [[...]].2

J$amount

[1] 1 2 -2 5

You can also replace specific fields.

J[["amount"]] <- c(1 ,2, -2, 8)

J

2Thebehaviour of ‘[[‘ may change in the future: it may then be used to iterate over the transactions in a journal, not
the fields. This would be motivated by https://developer.r-project.org/blosxom.cgi/R-devel/NEWS/2016/

03/09 even though the commit was reversed two days later https://developer.r-project.org/blosxom.cgi/

R-devel/NEWS/2016/03/11

16

https://developer.r-project.org/blosxom.cgi/R-devel/NEWS/2016/03/09
https://developer.r-project.org/blosxom.cgi/R-devel/NEWS/2016/03/09
https://developer.r-project.org/blosxom.cgi/R-devel/NEWS/2016/03/11
https://developer.r-project.org/blosxom.cgi/R-devel/NEWS/2016/03/11

2.3 Selecting transactions

instrument timestamp amount comment

1 EUR 2012 -01 -01 1 initial balance

2 EUR 2012 -01 -02 2

3 CHF 2012 -01 -03 -2 transfer

4 CHF 2012 -01 -04 8

4 transactions

The `[` method works with integers or logicals, returning the respective transactions.

J[2:3]

instrument timestamp amount comment

1 EUR 2012 -01 -02 2

2 CHF 2012 -01 -03 -2 transfer

2 transactions

J[J$amount < 0]

instrument timestamp amount comment

1 CHF 2012 -01 -03 -2 transfer

1 transaction

You can also pass a string, which is then interpreted as a regular expression that is matched
against all character fields in the journal.

J["eur"]

instrument timestamp amount comment

1 EUR 2012 -01 -01 1 initial balance

2 EUR 2012 -01 -02 2

2 transactions

By default, case is ignored, but you can set ignore.case to FALSE.

J["Transfer"]

instrument timestamp amount comment

1 CHF 2012 -01 -03 -2 transfer

1 transaction

17

2 Keeping track of transactions: journals

J["Transfer", ignore.case = FALSE]

no transactions

You can also specify the fields to match the string against.

J["Transfer", match.against = "instrument"]

no transactions

2.4 Computing balances

2.4.1 position

The function position gives the current balance of all instruments.

position(J)

2012 -01 -04

CHF 6

EUR 3

To get the position at a specific date, use the when argument.

position(J, when = as.Date("2012 -01 -03"))

2012 -01 -03

CHF -2

EUR 3

If you do not like such a tabular view, consider splitting the journal.

lapply(split(J, J$instrument),

position , when = as.Date("2012 -01 -03"))

$CHF

2012 -01 -03

CHF -2

$EUR

2012 -01 -03

EUR 3

18

2.4 Computing balances

To get a time series of positions, you can use specific keywords for when: all will print the
position at all timestamps in the journal.

position(J, when = "all")

CHF EUR

2012 -01 -01 0 1

2012 -01 -02 0 3

2012 -01 -03 -2 3

2012 -01 -04 3 3

Keywords first and last give you the first and last position. (The latter is the default; so if
when is not specified at all, the last position is computed.) endofmonth prints the positions at
the ends of all calendar months between the first and the last timestamp.

We are not limited to the timestamps that exist in the journal.

position(J, when = seq(from = as.Date("2011 -12 -30"),

to = as.Date("2012 -01 -06"),

by = "1 day"))

CHF EUR

2011 -12 -30 0 0

2011 -12 -31 0 0

2012 -01 -01 0 1

2012 -01 -02 0 3

2012 -01 -03 -2 3

2012 -01 -04 6 3

2012 -01 -05 6 3

2012 -01 -06 6 3

By default, position will show you all positions, even if they are zero.

J <- c(J, journal(instrument = "EUR",

amount = -3,

timestamp = as.Date("2012 -01 -05")))

position(J)

2012 -01 -05

CHF 6

EUR 0

You can suppress such positions with drop.zero.

position(J, drop.zero = TRUE)

19

2 Keeping track of transactions: journals

2012 -01 -05

CHF 6

drop.zero can also be a numeric value, in which case is it interpreted as an absolute tolerance.
This is useful in cases such as this one:

J <- c(J, journal(instrument = "USD",

timestamp = as.Date("2012 -01 -05"),

amount = c(0.1, 0.1, 0.1, -0.3)))

position(J, drop.zero = TRUE)

2012 -01 -05

CHF 6.00e+00

USD 2.78e-17

position(J, drop.zero = 1e-15)

2012 -01 -05

CHF 6

TODO: position may also use the account field.

2.4.2 Algorithms for computing balances

We have three vectors: when, timestamp and amount. Vectors when and timestamp are of the same
type and are both sorted in increasing order; timestamp and amount have the same length. The
result of the computation is a vector position with the same length as when.

i, j = 0 /* i loops over when; j loops over amount/timestamp */

for (i = 0; i < length(when); i++) {

if (i == 0)

pos[i] = 0;

else

pos[i] = pos[i - 1];

while (timestamp[j] <= when[i] && j < length(j))

position[i] += amount[j++];

}

20

2.5 Aggregating journal information

2.5 Aggregating journal information

Often the data provided by journals needs to be processed in some way. A straightforward
strategy is to call as.data.frame on the journal and then to use one of the many functions and
methods that can be used for dataframes, such as aggregate or apply.

A journal is a list of atomic vectors and hence already very similar to a dataframe. As a conse-
quence, many computations can also be done directly on the journal, in particular with tapply.

An example: you have a journal jnl and want to compute monthly turnover (two-way). If
there is only one instrument or all instruments may be added without harm, you can use this
expression:

tapply(jnl ,

INDEX = format(jnl$timestamp , "%Y-%m"),

FUN = function(x) sum(abs(x$amount)))

To break it down by instrument, just add instrument as a second grouping variable to the INDEX
argument.

tapply(jnl ,

INDEX = list(format(jnl$timestamp , "%Y-%m"),

jnl$instrument),

FUN = function(x) sum(abs(x$amount)))

A special case is when a journal is to be processed into a new journal. For this, pmwr defines
an aggregate method for journals.

aggregate.journal splits the journal according to the grouping argument by, which can be a
list (as in the default method) or an atomic vector.

The argument FUN can either be a function or list. If it is function, it should expect to re-
ceive a journal and also evaluate to a journal. (Note that this is different from R’s aggre-

gate.data.frame, which calls FUN on all columns, but in turn cannot address specific columns
of the data.frame.)

If FUN is a list, its elements should be named functions. The names should match fields in the
journal.

An example: we have a journal covering two trading days, and wish to create a summary
journal which aggregates buys/sells for every day.

jnl <- journal(timestamp = structure(c(15950 , 15951, 15950, 15951, 15950,

15950, 15951, 15951, 15951, 15951) ,

class = "Date"),

21

2 Keeping track of transactions: journals

amount = c(-3, -4, -3, -1, 3, -2, 1, 3, 5, 3),

price = c(104, 102, 102, 110, 106, 104, 104, 106, 108, 107),

instrument = c("B", "B", "A", "A", "B", "B", "A", "B", "A", "A"))

fun <- function(x) {

journal(timestamp = as.Date(x$timestamp [1]),

amount = sum(x$amount),

price = sum(x$amount*x$price)/sum(x$amount),

instrument = x$instrument [1L])

}

aggregate(jnl ,

by = list(jnl$instrument ,

sign(jnl$amount),

as.Date(jnl$timestamp)),

FUN = fun)

instrument timestamp amount price

1 A 2013 -09 -02 -3 102.0000

2 B 2013 -09 -02 -5 104.0000

3 B 2013 -09 -02 3 106.0000

4 A 2013 -09 -03 -1 110.0000

5 B 2013 -09 -03 -4 102.0000

6 A 2013 -09 -03 9 107.2222

7 B 2013 -09 -03 3 106.0000

7 transactions

22

3 Computing profit and loss

In this chapter we will deal with computing profit and loss in amount of currency. If you are
interested in computing returns, see Section Computing returns.

3.1 Simple cases

3.1.1 Total P/L

We buy one unit of an asset at a price of 100 euro and we sell it for 101. We have made a profit
of 1 euro.

This simple case is frequent enough that we should make the required computation simple as
well. The pmwr package provides a function pl, which for this case may be called as follows.

pl(price = c(100, 101),

amount = c(1, -1))

P/L total 1

average buy 100

average sell 101

cum. volume 2

'P/L total ' is in units of instrument;

'volume ' is sum of /absolute/ amounts.

Instead of a vectors price and amount, you could also have passed a journal to pl.

In principle, P/L is straightforward to compute. Let x be a vector of the absolute amounts
traded, and let p be a vector of the prices at which we traded. Then P/L is just the difference
between what we received when selling and what we paid when buying.∑

x sell
i psell

i −
∑

x
buy
i p

buy
i (3.1)

This can be simplified when we impose the convention that sold amounts are negative.

P/L = −
∑
x<0

xipi −
∑
x>0

xipi (3.2)

= −
∑

xipi (3.3)

23

3 Computing profit and loss

The function pl also expects this convention: in the code example we had x = [1,−1]′.

There are several ways to perform this basic (or fundamental, rather) computation. Here are
some, along with some timing results.

amount <- rep(c(-100,100), 100)

price <- rep(100, length(amount))

library("rbenchmark")

benchmark(

amount %*% price ,

sum(amount*price),

crossprod(amount , price),

t(amount*price) %*% rep(1, length(amount)),

columns = c("test", "elapsed", "relative"),

order = "relative",

replications = 20000)

pl uses the straightforward sum(amount * price) variant; only when very long vectors are
used, it switches to crossprod.

pl also accepts an argument instrument: if it is available, pl computes and reports P/L for each
instrument separately. As an example, suppose you traded shares of two German companies,
Adidas and Commerzbank. We collect the transactions in a journal.

jnl <- readOrg(text = "

| instrument | amount | price |

|-------------+--------+-------|

| Adidas | 50 | 100 |

| Adidas | -50 | 102 |

| Commerzbank | 500 | 8 |

| Commerzbank | -500 | 7 |

")

jnl <- as.journal(jnl)

jnl

instrument amount price

1 Adidas 50 100

2 Adidas -50 102

3 Commerzbank 500 8

4 Commerzbank -500 7

4 transactions

We can now pass the journal directly to pl.

24

3.1 Simple cases

pl(jnl)

Adidas

P/L total 100

average buy 100

average sell 102

cum. volume 100

Commerzbank

P/L total -500

average buy 8

average sell 7

cum. volume 1000

'P/L total ' is in units of instrument;

'volume ' is sum of /absolute/ amounts.

An aside: since the shares are denominated in the same currency (euro), total profit is the same
even if we had left out the instruments; however, average buying and selling price becomes
less informative.

Financial instruments do not only differ in the currencies inwhich they are denominated. Many
derivatives have multipliers, which you may also specify. Suppose you have traded FGBL (Ger-
man Bund futures) and FESX (EURO STOXX 50 futures).

jnl <- readOrg(text = "

| instrument | amount | price |

|-------------+--------+--------|

| FGBL MAR 16 | 1 | 165.20 |

| FGBL MAR 16 | -1 | 165.37 |

| FGBL JUN 16 | 1 | 164.12 |

| FGBL JUN 16 | -1 | 164.13 |

| FESX JUN 16 | 5 | 2910 |

| FESX JUN 16 | -5 | 2905 |

")

jnl <- as.journal(jnl)

jnl

instrument amount price

1 FGBL MAR 16 1 165.20

2 FGBL MAR 16 -1 165.37

3 FGBL JUN 16 1 164.12

25

3 Computing profit and loss

4 FGBL JUN 16 -1 164.13

5 FESX JUN 16 5 2910.00

6 FESX JUN 16 -5 2905.00

6 transactions

One point of the FGBL translates into 1000 euros; for the FESX it is 10 euros.

futures_pl <- pl(jnl ,

multiplier = c("^FGBL" = 1000, "^FESX" = 10),

multiplier.regexp = TRUE)

futures_pl

FESX JUN 16

P/L total -250

average buy 2910

average sell 2905

cum. volume 10

FGBL JUN 16

P/L total 10

average buy 164.12

average sell 164.13

cum. volume 2

FGBL MAR 16

P/L total 170

average buy 165.2

average sell 165.37

cum. volume 2

'P/L total ' is in units of instrument;

'volume ' is sum of /absolute/ amounts.

Note that we used a named vector to pass the multipliers. Per default, the names of this vector
need to exactly match the instruments’ names. Setting multiplier.regexp to TRUE causes the
names of the multiplier vector to be interpreted as (Perl-style) regular expressions.

At this point, it may be helpful to describe how we can access the results of such P/L computa-
tions (other than having them printed to the console, that is). The function pl always returns
a list of lists – one list for each instrument.

str(futures_pl)

26

3.1 Simple cases

List of 3

$ FESX JUN 16: List of 6

..$ pl : num -250

..$ realised : logi NA

..$ unrealised: logi NA

..$ buy : num 2910

..$ sell : num 2905

..$ volume : num 10

$ FGBL JUN 16: List of 6

..$ pl : num 10

..$ realised : logi NA

..$ unrealised: logi NA

..$ buy : num 164

..$ sell : num 164

..$ volume : num 2

$ FGBL MAR 16: List of 6

..$ pl : num 170

..$ realised : logi NA

..$ unrealised: logi NA

..$ buy : num 165

..$ sell : num 165

..$ volume : num 2

- attr(*, "class")= chr "pl"

- attr(*, "along.timestamp")= logi FALSE

- attr(*, "instrument")= chr [1:3] "FESX JUN 16" "FGBL JUN 16" "FGBL MAR 16"

Each such list contains numeric vectors: ’pl’, ’realised’, ’unrealised’, ’buy’, ’sell’, ’volume’. There
may also be an additional vector, timestamp, to be described later in Section PL over time.

Data can be extracted by standard methods. The vectors ’realised’ and ’unrealised’ will be NA

unless along.timestamp is TRUE, also described in Section PL over time.

unlist(futures_pl[["FESX JUN 16"]])

pl realised unrealised buy sell volume

-250 NA NA 2910 2905 10

unlist(lapply(futures_pl, `[[`, "volume"))

FESX JUN 16 FGBL JUN 16 FGBL MAR 16

10 2 2

27

3 Computing profit and loss

You may prefer sapply(...) instead of unlist(lapply(...)). Also, extracting the raw P/L
numbers of each instrument is so common that you can say pl(pl(...)). So you could have
written:

pl(pl(jnl ,

multiplier = c("FGBL" = 1000, "FESX" = 10),

multiplier.regexp = TRUE))

FESX JUN 16 FGBL JUN 16 FGBL MAR 16

-250 10 170

It is often more convenient to have the data presented as a table.

as.data.frame(futures_pl)

pl buy sell volume

FESX JUN 16 -250 2910.00 2905.00 10

FGBL JUN 16 10 164.12 164.13 2

FGBL MAR 16 170 165.20 165.37 2

Or if you like ASCII tables, with toOrg.

toOrg(as.data.frame(futures_pl), row.names = "instrument")

| instrument | pl | buy | sell | volume |

|-------------+------+--------+--------+--------|

| FESX JUN 16 | -250 | 2910 | 2905 | 10 |

| FGBL JUN 16 | 10 | 164.12 | 164.13 | 2 |

| FGBL MAR 16 | 170 | 165.2 | 165.37 | 2 |

We can also use pl when there are open positions. The simplest example is a journal of just
one trade.

pl(amount = 1, price = 100)

P/L total NA

average buy 100

average sell NA

cum. volume 1

'P/L total ' is in units of instrument;

'volume ' is sum of /absolute/ amounts.

Warning message:

28

3.1 Simple cases

In pl.default(amount = 1, price = 100) :

'sum(amount)' is not zero: specify 'vprice ' to compute p/l

Of course, there be no P/L number. But the warning message that is thrown already tells us
what to do: we need to specify a price at which the open position is to be valued. This valuation
price is passed as argument vprice.

pl(amount = 1, price = 100, vprice = 105)

P/L total 5

average buy 100

average sell 105

cum. volume 1

'P/L total ' is in units of instrument;

'volume ' is sum of /absolute/ amounts.

Note that average sell takes into account the valuation price that we specified. But cum.

volume has remained 1 since only 1 unit was actually traded.

A common task is to compute P/L over a specified period of time such as one trading day. The
procedure for such a case requires three ingredients:

1. the initial position and its valuation prices,

2. the trades during the period,

3. the final position and its prices.

Suppose yesterday, at market close, we had the following positions.

open_position <- c(`FESX JUN 16` = -20, `FGBL JUN 16` = 10)

prices <- c(`FESX JUN 16` = 2912, `FGBL JUN 16` = 164.23)

Note that, as with the multipliers above, we use named vectors for both the position and the
prices: the names indicate the instruments.

Trading just ended, and we have done the following trades.

jnl

instrument amount price

1 FGBL MAR 16 1 165.20

2 FGBL MAR 16 -1 165.37

3 FGBL JUN 16 1 164.12

4 FGBL JUN 16 -1 164.13

29

3 Computing profit and loss

5 FESX JUN 16 5 2910.00

6 FESX JUN 16 -5 2905.00

6 transactions

pl(jnl ,

initial.position = open_position ,

initial.price = prices ,

vprice = c(`FESX JUN 16` = 2902, `FGBL JUN 16` = 164.60) ,

multiplier = c("FGBL" = 1000, "FESX" = 10),

multiplier.regexp = TRUE)

FESX JUN 16

P/L total 1750

average buy 2903.6

average sell 2910.6

cum. volume 10

FGBL JUN 16

P/L total 3710

average buy 164.22

average sell 164.56

cum. volume 2

FGBL MAR 16

P/L total 170

average buy 165.2

average sell 165.37

cum. volume 2

'P/L total ' is in units of instrument;

'volume ' is sum of /absolute/ amounts.

We could have simulated this computation by creating one journal of the initial position and
another journal (with reversed amount signs) for the final position, merging all three journals
and then computing P/L.

3.1.2 P/L over time

In the examples above, we computed total P/L. But it is often illuminating to see how P/L
evolved over time. Suppose that a stock trader bought one share at 50, one share at 90 and sold
two shares at 100. These trades resulted in a profit of 60, or an average return of more than
+40% (bought at an average price of 70, and sold at 100).

30

3.1 Simple cases

jnl <- journal(price = c(90, 50, 100),

amount = c(1, 1, -2))

pl(jnl)

P/L total 60

average buy 70

average sell 100

cum. volume 4

'P/L total ' is in units of instrument;

'volume ' is sum of /absolute/ amounts.

That may appear like some pretty good trading. Yet suppose that the order of the trades was

buy at 90 => buy at 50 => sell at 100.

You may have noticed that the journal that we created above already has the trades ordered
this way. We may not know what was traded and when, but there is clearly some information
in the order of the trades and the drawdown that it implies: namely a mark-to-market loss of
at least 40 before it recovered. For situations like this, the argument along.timestamp can be
used.

pl(jnl , along.timestamp = TRUE)

P/L total 0 -40 60

__ realised 0 0 60

__ unrealised 0 -40 0

average buy 70

average sell 100

volume 1 2 4

'P/L total ' is in units of instrument;

'volume ' is sum of /absolute/ amounts.

Note that we do not provide an actual timestamp, in which case the function implicitly uses
integers 1, 2, …, length(amount). With no further arguments, as here, the function computes
the running position and evaluates it at every trade with the trade’s price. This may not be
totally accurate because of bid–ask spreads or other transaction costs. But it provides more
information than only computing the aggregate P/L for the trades.

str(pl(jnl , along.timestamp = TRUE))

31

3 Computing profit and loss

List of 1

$:List of 7

..$ timestamp : logi [1:3] NA NA NA

..$ pl : num [1:3] 0 -40 60

..$ realised : num [1:3] 0 0 60

..$ unrealised: num [1:3] 0 -40 0

..$ buy : num 70

..$ sell : num 100

..$ volume : num [1:3] 1 2 4

- attr(*, "class")= chr "pl"

- attr(*, "along.timestamp")= logi TRUE

- attr(*, "instrument")= logi NA

In the previous section, we used vprice to value a final open position. It turns out we can also
use it to value a position over time.

3.2 More-complicated cases

Unfortunately, in real life computing P/L is often more complicated:

• One asset-price unit may not translate into one currency unit: there may be multipliers
a.k.a. contract factors; there are also instruments with variable multipliers, e.g. Aus-
tralian government bond futures. An easy to handle this is by computing effective posi-
tion sizes; but it may take some thinking to come upwith a reusable scheme (e.g., looking
up multipliers in a table).

• Asset positions may map into cashflows in non-obvious ways. The simple case is the
delay in actual payment and delivery of an asset, which is often two or three days. The
more problematic cases are derivatives with daily adjustments of margins. In such cases,
one may need to model (i.e. keep track of) the actual account balances.

• Assets may be denominated in various currencies.

• Currencies themselves may be assets in the portfolio. Depending on how they are traded
(cash, forwards, &c.), computing P/L may not be straightforward.

How – or, rather, to what degree – these complications are handled is, as always, up to the
user. For a single instrument, computing P/L in units of the instrument is usually meaningful,
though perhaps not always intuitive. But adding up the profits and losses of several assets often
will often not work because of multipliers or different currencies. A simple and transparent
way is then to manipulate the journal before P/L is computed (e.g., multiply notionals by their
multipliers).

32

4 Computing returns

4.1 Simple returns

The function returns computes returns from prices. The function computes what are some-
times called simple returns:1 let Pt be the price at point in time t , then

rt ≡ Rt − 1 =
Pt
Pt−1

− 1 =
Pt − Pt−1
Pt−1

. (4.1)

For computing profit/loss in currency units, see Section Computing profit and (or) loss.

Typically, we transform a whole series Pt1, Pt2, Pt3, . . . into returns Rt2,Rt3, . . ., which is a one-
liner in R:

simple_returns <- function(x)

x[-1L]/x[-length(x)] - 1

(You may argue that these are two lines: yet even a one-liner, if used repeatedly, should be
written as a function.)

Let us try it. pmwr comes with two small datasets, DAX and REXP. Both are data-frames of one
column; the rownames are the dates. Given a vector of prices – here, the closing values of the
DAX, the German stock-market index, for the first five business days of 2014, – the function
computes returns.

P <- head(DAX[[1]], n = 5)

P

[1] 9400 9435 9428 9506 9498

simple_returns(P)

[1] 0.003735 -0.000758 0.008294 -0.000879

In fact, using returns as provided by pmwr would have given the same result.
1The function never computes logarithmic returns.

33

4 Computing returns

returns(P)

[1] 0.003735 -0.000758 0.008294 -0.000879

pmwr’s returns function offers more convenience than simple_returns. For instance, it will
recognise when the input argument has several columns, such as a matrix or a dataframe. In
such a case, it computes returns for each column.2

returns(cbind(P, P))

P P

[1,] 0.003735 0.003735

[2,] -0.000758 -0.000758

[3,] 0.008294 0.008294

[4,] -0.000879 -0.000879

The argument pad determines how the initial observation is handled. The default, NULL, means
that the first observation is dropped. It is often useful to use NA instead, since in this way the
returns series keeps the same length as the original price series.

data.frame(price = P, returns = returns(P, pad = NA))

price returns

1 9400 NA

2 9435 0.003735

3 9428 -0.000758

4 9506 0.008294

5 9498 -0.000879

Setting pad to 0 can also be useful, because then it is easy to ’rebuild’ the original series with
cumprod. (But see Section Scaling series for a description of the function scale1, which is even
more convenient.)

P[1] * cumprod (1 + returns(P, pad = 0))

[1] 9400 9435 9428 9506 9498

returns is a generic function, which goes along with some overhead. If you need to compute
returns on simple data structures as in the examples above and need fast computation, then you
may also use .returns. This function is the actual workhorse that performs the raw returns
calculation.
2See section Vectorisation.

34

4.1 Simple returns

Besides having methods for numeric vectors and dataframes, returns also understands zoo

objects.

So let us create two zoo series, DAX and REXP. These two variables now mask the original data-
frames in pmwr. To get the latter back, either remove the variables or say data(DAX).

DAX <- zoo(DAX[[1]], as.Date(row.names(DAX)))

REXP <- zoo(REXP [[1]], as.Date(row.names(REXP)))

str(DAX)

'zoo' series from 2014 -01 -02 to 2015 -12 -30

Data: num [1:505] 9400 9435 9428 9506 9498 ...

Index: Date [1:505] , format: "2014 -01 -02" "2014 -01 -03" ...

str(REXP)

'zoo' series from 2014 -01 -02 to 2015 -12 -30

Data: num [1:502] 441 441 442 442 442 ...

Index: Date [1:502] , format: "2014 -01 -02" "2014 -01 -03" ...

returns(head(DAX , 5), pad = NA)

2014 -01 -02 2014 -01 -03 2014 -01 -06 2014 -01 -07 2014 -01 -08

NA 0.003735 -0.000758 0.008294 -0.000879

Matrices work as well. We combine both series into a two-column matrix drax.3

drax <- cbind(DAX , REXP)

returns(head(drax , 5))

DAX REXP

2014 -01 -03 0.003735 0.000611

2014 -01 -06 -0.000758 0.001704

2014 -01 -07 0.008294 0.000621

2014 -01 -08 -0.000879 -0.000131

In fact, zoo objects bring another piece of information – timestamps – that returns can use.
(Since xts series inherit from zoo, they will work as well.)

3In case you did not know: drax is not only the name of a dataset in this book, but also the name of superhero
and of the villain of a James Bond novel. The latter is actually German, which makes it obvious to choose his
name for representing German indices.

35

4 Computing returns

4.2 Holding-period returns

When a timestamp is available, returns can compute returns for specific calendar periods. As
an example, we look at the daily DAX levels in 2014 and 2015.

returns(DAX , period = "month")

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec YTD

2014 -1.0 4.1 -1.4 0.5 3.5 -1.1 -4.3 0.7 0.0 -1.6 7.0 -1.8 4.3

2015 9.1 6.6 5.0 -4.3 -0.4 -4.1 3.3 -9.3 -5.8 12.3 4.9 -5.6 9.6

If, for some reason, you prefer not use zoo, you can also pass the timestamp explicitly to re-

turns.

returns(coredata(DAX), t = index(DAX), period = "month")

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec YTD

2014 -1.0 4.1 -1.4 0.5 3.5 -1.1 -4.3 0.7 0.0 -1.6 7.0 -1.8 4.3

2015 9.1 6.6 5.0 -4.3 -0.4 -4.1 3.3 -9.3 -5.8 12.3 4.9 -5.6 9.6

Despite the way these monthly returns are printed: the result of the function call is a numeric
vector (the return numbers), with additional information added through attributes. There is
also a class attribute, which has value p_returns. The advantage of this data structure is that it
is ‘natural’ to compute with the returns, e.g. computing means, extremes or similar quantities.

range(returns(DAX , period = "month"))

[1] -0.0928 0.1232

Most useful, however, is probably the print method, whose results you have seen above.

You may also compute monthly returns for matrices, i.e. for more than one asset. But now the
print method will behave differently. Suppose we combine the prices of the DAX and of the
REXP. The function’s assumption is that now it would be more convenient to print the returns
aligned by date in a table.

returns(drax , period = "month")

DAX REXP

2014 -01 -31 -1.0 1.8

2014 -02 -28 4.1 0.4

2014 -03 -31 -1.4 0.1

2014 -04 -30 0.5 0.3

2014 -05 -30 3.5 0.9

36

4.2 Holding-period returns

2014 -06 -30 -1.1 0.4

2014 -07 -31 -4.3 0.4

2014 -08 -29 0.7 1.0

2014 -09 -30 0.0 -0.1

2014 -10 -31 -1.6 0.1

2014 -11 -28 7.0 0.4

2014 -12 -30 -1.8 1.0

2015 -01 -30 9.1 0.3

2015 -02 -27 6.6 0.1

2015 -03 -31 5.0 0.3

2015 -04 -30 -4.3 -0.5

2015 -05 -29 -0.4 -0.2

2015 -06 -30 -4.1 -0.8

2015 -07 -31 3.3 0.7

2015 -08 -31 -9.3 0.0

2015 -09 -30 -5.8 0.4

2015 -10 -30 12.3 0.4

2015 -11 -30 4.9 0.3

2015 -12 -30 -5.6 -0.6

If you rather wanted the other, one-row-per-year display, just call the function separately for
each series.

lapply(list(DAX = dax , REXP = rex),

returns , period = "month")

$DAX

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec YTD

2014 -1.0 4.1 -1.4 0.5 3.5 -1.1 -4.3 0.7 0.0 -1.6 7.0 -1.8 4.3

2015 9.1 6.6 5.0 -4.3 -0.4 -4.1 3.3 -9.3 -5.8 12.3 4.9 -5.6 9.6

$REXP

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec YTD

2014 1.8 0.4 0.1 0.3 0.9 0.4 0.4 1.0 -0.1 0.1 0.4 1.0 7.1

2015 0.3 0.1 0.3 -0.5 -0.2 -0.8 0.7 0.0 0.4 0.4 0.3 -0.6 0.5

See ?print.preturns for more display options. For instance:

print(returns(DAX , period = "month"),

digits = 2, year.rows = FALSE , plus = TRUE ,

month.names = 1:12)

2014 2015

1 -1.00 +9.06

37

4 Computing returns

2 +4.14 +6.61

3 -1.40 +4.95

4 +0.50 -4.28

5 +3.54 -0.35

6 -1.11 -4.11

7 -4.33 +3.33

8 +0.67 -9.28

9 +0.04 -5.84

10 -1.56 +12.32

11 +7.01 +4.90

12 -1.76 -5.62

YTD +4.31 +9.56

There are methods toLatex and toHTML for monthly returns.

In Sweave documents, you need to use results = tex and echo = false in the chunk options:Sweave

\begin{tabular }{ rrrrrrrrrrrrrr}

<<results=tex ,echo=false >>=

toLatex(returns(dax , period = "month "))

\end{tabular}

(There is also a vignette that gives examples; say vignette("FinTeX", package = "PMwR") to
open it.)

returns accepts other values for period. For yearly returns, use period "year".

returns(DAX , period = "year")

2014 2015

4.3 9.6

returns(drax , period = "year")

DAX REXP

2014 4.3 7.1

2015 9.6 0.5

To get annualised returns, use period ann (or actually any string that matches the regular ex-
pression ^ann; case is ignored).

returns(DAX , period = "ann")

38

4.3 Returns when weights are fixed

6.9% [02 Jan 2014 -- 30 Dec 2015]

Now let us try a shorter period.

returns(window(DAX , end = as.Date("2014-1-31")),

period = "ann")

-1.0% [02 Jan 2014 -- 31 Jan 2014; less than one year , not annualised]

The function did not annualise: it refuses to do so if the time period is shorter than one year.
(You can see the monthly return for January 2014 in the tables above.)

To force annualising, add a !. The exclamation mark serves as a mnenomic that it is now
imperative to annualise.

returns(window(DAX , end = as.Date("2014-1-31")),

period = "ann!")

-11.8% [02 Jan 2014 -- 31 Jan 2014; less than one year , but annualised]

There are several more accepted values for period, such as month-to-date (mtd), year-to-date
(ytd) or inception-to-date (itd). The help page of returns lists all options.

4.3 Returns when weights are fixed

Sometimes we may need to compute returns returns for a portfolio of fixed weights, given
an assumption when the portfolio is rebalanced. For instance, we may want to see how a
constant allocation of [0.1, 0.5, 0.4]′ to three funds would have done, assuming that a portfolio
is rebalanced once a month.

If more detail is necessary, then btest can be used; see Chapter Backtesting. But the simple
case can be done with returns already. Here is an example.

prices <- c(100, 102, 104, 104, 104.5,

2, 2.2, 2.4, 2.3, 2.5,

3.5, 3, 3.1, 3.2, 3.1)

dim(prices) <- c(5, 3)

prices

39

4 Computing returns

[,1] [,2] [,3]

[1,] 100 2.0 3.5

[2,] 102 2.2 3.0

[3,] 104 2.4 3.1

[4,] 104 2.3 3.2

[5,] 104 2.5 3.1

Now suppose we want a constant weight vector, [0.1, 0.5, 0.4]′, but only rebalance at times 1
and 4. (That is, we rebalance the portfolio only with the prices at timestamps 1 and 4.)

returns(prices ,

weights = c(10, 50, 40)/100,

rebalance.when = c(1, 4))

[1] -0.00514 0.06376 -0.01282 0.03146

attr(,"holdings")

[,1] [,2] [,3]

[1,] 0.001 0.250 0.114

[2,] 0.001 0.250 0.114

[3,] 0.001 0.250 0.114

[4,] 0.001 0.227 0.131

[5,] 0.001 0.227 0.131

attr(,"contributions")

[,1] [,2] [,3]

[1,] 0.000000 0.0000 0.0000

[2,] 0.002000 0.0500 -0.0571

[3,] 0.002010 0.0503 0.0115

[4,] 0.000000 -0.0236 0.0108

[5,] 0.000481 0.0435 -0.0125

In fact, rebalancing at the prices in 1 is always implied.

The result is the return series plus two additional pieces of information, stored in attributes.

holdings A matrix with the same dimensions as the price matrix we used as input. It pro-
vides the hypothetical holdings that were used to compute the returns. Note that these
holdings only change at timestamps 1 and 4 in the example.

contributions Another matrix; it provides the return contributions of the single assets (in
columns) in each period (in rows).

40

4.4 Return contribution

4.4 Return contribution

Letw(t , i) be the weight of portfolio segment i at the beginning of period t , and let r(t , i) be the
return of segment i over period t . Then the portfolio return over period t , rP(t) is a weighted
sum of the N segment returns.

rP(t) =
N∑
i=1

r(t , i)w(t , i) . (4.2)

When the weights sum to unity, we may also write

1 + rP(t) =
N∑
i=1

(
1 + r(t , i)

)
w(t , i) (4.3)

or, defining 1 + r ≡ R,

RP(t) =
N∑
i=1

R(t , i)w(t , i) . (4.4)

The total return contribution of segment i over time equals

T−1∑
t=1

(
R(t , i)w(t , i)

T∏
s=t+1

RP(s) − 1

)
+ r(T , i)w(T , i)︸ ︷︷ ︸

final period

. (4.5)

In this way, a segment’s return contribution in on period is reinvested in the overall portfolio
in succeeding periods.

The calculation is provided in the function rc (‘return contribution’).

weights <- rbind(c(0.25, 0.75), ## the assets ' weights

c(0.40, 0.60), ## during three periods

c(0.25, 0.75))

R <- rbind(c(1 , 0), ## the assets ' returns

c(2.5, -1.0), ## during these periods

c(-2 , 0.5))/100

rc(R, weights , segment = c("equities", "bonds"))

$period_contributions

timestamp equities bonds total

1 1 0.0025 0.00000 0.00250

2 2 0.0100 -0.00600 0.00400

3 3 -0.0050 0.00375 -0.00125

41

4 Computing returns

$total_contributions

equities bonds total

0.00749 -0.00224 0.00525

4.5 Returns when there are external cashflows

The function unit_prices helps to compute time-weighted returns of a portfolio when there
are in- and outflows. (The term time-weighted returns is actually a misnomer, as returns are
not weighted at all. They are only time-weighted if time-periods are of equal length.)

NAV <- data.frame(timestamp = seq(as.Date("2017-1-1"),

as.Date("2017-1-10"),

by = "1 day"),

NAV = c(0 ,101:104 ,205:209))

cf <- data.frame(timestamp = c(as.Date("2017-1-1"),

as.Date("2017-1-5")),

cashflow = c(100, 100))

unit_prices(NAV , cf)

timestamp NAV price shares cashflow new_shares total_shares NAV_after_cf

1 2017 -01 -01 0 100.000 0.00000 100 1.000000 1.00000

100

2 2017 -01 -02 101 101.000 1.00000 0 0.000000 1.00000

101

3 2017 -01 -03 102 102.000 1.00000 0 0.000000 1.00000

102

4 2017 -01 -04 103 103.000 1.00000 0 0.000000 1.00000

103

5 2017 -01 -05 104 104.000 1.00000 100 0.961538 1.96154

204

6 2017 -01 -06 205 104.510 1.96154 0 0.000000 1.96154

205

7 2017 -01 -07 206 105.020 1.96154 0 0.000000 1.96154

206

8 2017 -01 -08 207 105.529 1.96154 0 0.000000 1.96154

207

9 2017 -01 -09 208 106.039 1.96154 0 0.000000 1.96154

208

42

4.5 Returns when there are external cashflows

10 2017 -01 -10 209 106.549 1.96154 0 0.000000 1.96154

209

43

5 Backtesting

This chapter explains how to test trading strategies with the btest function.

5.1 Decisions

At a given instant in time (in actual life, ‘now’), a trader needs to answer the following ques-
tions:

1. Do I want to compute a new target portfolio, yes or no? If yes, go ahead and compute
the new target portfolio.

2. Given the target portfolio and the actual portfolio, do I want to rebalance (i.e. close the
gap between the actual portfolio and the target portfolio)? If yes, rebalance.

If such a decision is not just hypothetical, then the answer to the second question may lead
to a number of orders sent to a broker. Note that many traders do not think in terms of stock
(i.e. balances) as we did here; rather, they think in terms of flow (i.e. orders). Both approaches
are equivalent, but the described one makes it easier to handle missed trades and synchronise
accounts.

During a backtest, we will simulate the decisions of the trader. How precisely we simulate
depends on the trading strategy. The btest function is meant as a helper function to simulate
these decisions. The logic for the decisions described above must be coded in the functions
do.signal, signal and do.rebalance.

Implementing btest required a number of decision, too: (i) what to model (i.e. how to sim-
ulate the trader), and (ii) how to code it. As an example for point (i): how precisely do we
want to model the order process (e.g. use limit orders?, allow partial fills?) Example for (ii):
the backbone of btest is a loop that runs through the data. Loops are slow in R when com-
pared with compiled languages, so should we vectorise instead? Vectorisation is indeed often
possible, namely if trading is not path-dependent. If we have already a list of trades, we can
efficiently transform them into a profit-and-loss in R without relying on an explicit loop (see
Section Computing profit and (or) loss). Yet, one advantage of looping is that the trade logic is
more similar to actual trading; we may even be able to reuse some code in live trading.

Altogether, the aim for btest is to stick to the functional paradigm as much as possible. Func-
tions receive arguments and evaluate to results; but they do not change their arguments, nor

45

5 Backtesting

do they assign or change other variables ‘outside’ their environment, nor do the results depend
on some variable outside the function. This creates a problem, namely how to keep track of
state. If we know what variables need to be persistent, we could pass them to the function and
always have them returned. But we would like to be more flexible, so we can pass an environ-
ment; examples are below. To make that clear: functional programming should not be seen as
a yes-or-no decision; it is a matter of degree. And more of the functional approach can help
already.

5.2 Data structure

All computations of btest will be based on one or several price series of length T. Internally,
these prices are stored in numeric matrices.

Prices are passed as argument prices. For a single asset, this must be a matrix of prices with
four columns: open, high, low and close.

For n assets, you need to pass a list of length four: prices[[1]] must be a matrix with n

columns containing the open prices for the assets; prices[[2]] is a matrix with the high prices,
and so on. For instance, with two assets, you need four matrices with two columns each:

open high low close

+-+-+ +-+-+ +-+-+ +-+-+

| | | | | | | | | | | |

| | | | | | | | | | | |

| | | | | | | | | | | |

| | | | | | | | | | | |

| | | | | | | | | | | |

+-+-+ +-+-+ +-+-+ +-+-+

If only close prices are used, then for a single asset, use either a matrix of one column or a
numeric vector. For multiple assets a list of length one must be passed, containing a matrix
of close prices. For example, with 100 close prices of 5 assets, the prices should be arranged in
a matrix p of size 100 times 5; and prices = list(p).

The btest function runs from b+1 to T. The variable b is the burn-in and it needs to be a positive
integer. When we take decisions that are based on past data, we will lose at least one data
point. In rare cases b may be zero.

Here is an important default: at time =t=, we can use information up to time t-1. Suppose that
t were 4. We may use all information up to time 3, and trade at the open in period 4:

t time open high low close

1 HH:MM:SS <--\

2 HH:MM:SS <-- - use information

46

5.3 Function arguments

3 HH:MM:SS _________________________ <--/

4 HH:MM:SS X <- trade here

5 HH:MM:SS

We could also trade at the close:

t time open high low close

1 HH:MM:SS <-- \

2 HH:MM:SS <-- - use information

3 HH:MM:SS _________________________ <-- /

4 HH:MM:SS X <-- trade here

5 HH:MM:SS

No, we cannot trade at the high or low. (Some people like the idea, as a robustness check, to
always buy at the high, sell at the low. Robustness checks – forcing a bit of bad luck into the
simulation – are a good idea, notably bad executions. High/low ranges can inform such checks,
but using these ranges does not go far enough, and is more of a good story than a meaningful
test.)

5.3 Function arguments

5.3.1 Available information within functions

btest expects as arguments a number of functions, such as signal; see the following section
for a complete list. The default is to specify no arguments to these functions, because they
can all access the following ‘objects’. These objects actually are, with the exception of Globals,
themselves functions that can access certain data. These functions can only read; there are
no replacement functions. The exception is Globals, which is an environment, and which can
explicitly be used for writing (i.e. storing data).

Open open prices

High high prices

Low low prices

Close close prices

Wealth the total wealth (cash plus positions) at a given point in time

Cash cash (in accounting currency)

Time current time (an integer)

47

5 Backtesting

Timestamp the timestamp when that is specified (i.e. when the argument timestamp is sup-
plied); if not, it defaults to Time

Portfolio the current portfolio

SuggestedPortfolio the currently-suggested portfolio

Globals an environment (not a function)

All functions take as their first argument a lag, which defaults to 1. So to get the most recent
close price, say

Close()

which is the same as Close(lag = 1).

The lag can be a vector, too: the expression

Close(Time ():1)

for instance will return all available close prices. So in period 11, say, you want close prices for
lags 10, 9, …, 1. Hence, to receive prices in their correct order, the lag sequence must always
be in reverse order.

If you find it awkward to specify the lag in this reverse order, you may use the argument n
instead, which specifies to retrieve the last n data points. So the above Close(Time():1) is
equivalent to

Close(n = Time ())

and saying

Close(n = 10)

will get you the last ten closing prices.

5.3.2 Function arguments

signal The function signal uses information until and including t-1 and returns the suggested
portfolio (a vector) to be held at t. This position should be in units of the instruments;
if you prefer to work with weights, then you should set convert.weights to TRUE. Then,
the value returned by signal will be interpreted as weights and will be automatically
converted to position sizes.

48

5.4 Examples: A single asset

do.signal do.signal uses information until and including t-1 and must return TRUE or FALSE
to indicate whether a signal (i.e. new suggested position) should be computed. This is
useful when the signal computation is costly and only be done at specific points in time.
If the function is not specified, it defaults to function() TRUE. Instead of a function, this
may also be

• a vector of integers, which then indicate the points in time when to compute a
position, or

• a vector of logical values, which then indicate the points in time when to compute
a position, or

• a vector that inherits from the class of timestamp (e.g. Date), or

• one of the keywords firstofmonth or lastofmonth (in this case, timestamp must
inherit from Date or be coercible to Date).

do.rebalance just like do.signal, but refers to the actual trading. If the function is not spec-
ified, it defaults to function() TRUE. Note that rebalancing can typically not take place
at a higher frequency than implied by signal. That is because calling signal leads to a
position, and when this position does not change (i.e. signalwas not called), there is ac-
tually no need to rebalance. So do.rebalance is normally used when rebalancing should
be done less often that signal computation, e.g. when the decision whether to trade or
not is conditional on something.

print.info The function is called at the end of an iteration. Whatever it returns will be ignored
since it is called for its side effect: print information to the screen, into a file or into some
other connection.

cashflow The function is called at the end of each iteration; its value is added to the cash. The
function provides a clean way to, for instance, add accrued interest to or subtract fees
from a strategy.

5.4 Examples: A single asset

It is best to describe the btest function through a number of simple examples.

5.4.1 A useless first example

I really like simple examples. Suppose we have a single instrument, and we use only close
prices. The trading rule is to buy, and then to hold forever. All we need is the time series of
the prices and the signal function. As an instrument we use the EURO STOXX 50 future with
expiry September 2015.

49

5 Backtesting

timestamp <- structure(c(16679L, 16680L, 16681L, 16682L,

16685L, 16686L, 16687L, 16688L,

16689L, 16692L, 16693L),

class = "Date")

prices <- c(3182, 3205, 3272, 3185, 3201,

3236, 3272, 3224, 3194, 3188, 3213)

data.frame(timestamp , prices)

timestamp prices

1 2015 -09 -01 3182

2 2015 -09 -02 3205

3 2015 -09 -03 3272

4 2015 -09 -04 3185

5 2015 -09 -07 3201

6 2015 -09 -08 3236

7 2015 -09 -09 3272

8 2015 -09 -10 3224

9 2015 -09 -11 3194

10 2015 -09 -14 3188

11 2015 -09 -15 3213

Sep 01 Sep 05 Sep 09 Sep 13

31
80

32
40

50

5.4 Examples: A single asset

The signal function is very simple indeed.

signal <- function ()

1

signal must be written so that it returns the suggested position in units of the asset. In this
first example, the suggested position always is 1 unit. It is only a suggested portfolio because
we can specify rules whether or not to trade. Examples follow below.

To test this strategy, we call btest. The initial cash is zero per default, so initial wealth is also
zero in this case. We can change it through the argument initial.cash.

(solution <- btest(prices = prices , signal = signal))

initial wealth 0 => final wealth 8

The function returns a list with a number of components, but they are not printed. Instead, a
simple print method displays some information about the results. In this case, it tells us that
the total equity of the strategy increased from 0 to 8.

We arrange more details into a data.frame. suggest is the suggested position; position is the
actual position.

trade_details <- function(solution , prices)

data.frame(price = prices ,

suggest = solution$suggested.position ,

position = unname(solution$position),

wealth = solution$wealth ,

cash = solution$cash)

trade_details(unclass(solution), prices)

price suggest position wealth cash

1 3182 0 0 0 0

2 3205 1 1 0 -3205

3 3272 1 1 67 -3205

4 3185 1 1 -20 -3205

5 3201 1 1 -4 -3205

6 3236 1 1 31 -3205

7 3272 1 1 67 -3205

8 3224 1 1 19 -3205

9 3194 1 1 -11 -3205

10 3188 1 1 -17 -3205

11 3213 1 1 8 -3205

51

5 Backtesting

We bought in the second period because the default setting for the burnin b is 1. Thus, we lose
one observation. In this particular case here, we do not rely in any way on the past; hence, we
set b to zero. With this setting, we buy at the first price and hold until the end of the data.

solution <- btest(prices = prices , signal = signal ,

b = 0)

trade_details(solution , prices)

price suggest position wealth cash

1 3182 1 1 0 -3182

2 3205 1 1 23 -3182

3 3272 1 1 90 -3182

4 3185 1 1 3 -3182

5 3201 1 1 19 -3182

6 3236 1 1 54 -3182

7 3272 1 1 90 -3182

8 3224 1 1 42 -3182

9 3194 1 1 12 -3182

10 3188 1 1 6 -3182

11 3213 1 1 31 -3182

If you prefer the trades only, i.e. not the position series, the solution also contains a journal.
(See Keeping track of transactions: journals for more on journals.)

journal(solution)

instrument timestamp amount price

1 asset 1 1 1 3182

1 transaction

To make the journal more informative, we can pass timestamp and instrument information
when we call btest.

journal(btest(prices = prices , signal = signal , b = 0,

timestamp = timestamp , ## defined above ,

together with prices

instrument = "FESX SEP 2015"))

instrument timestamp amount price

1 FESX SEP 2015 2015 -09 -01 1 3182

1 transaction

52

5.4 Examples: A single asset

Before we go to the next examples, a final remark, on data frequency. I have used daily data
here, but any other frequency, also intraday data, is fine. btestwill not care of what frequency
your data are or whether your data are regularly spaced; it will only loop over the observations
that it is given. It is your own responsibility to write signal (and other functions) in such a
way that they encode a meaningful trade logic.

5.4.2 More-useful examples

Now we make our strategy slightly more selective. The trading rule is to have a position of 1
unit of the asset whenever the last observed price is below 3200 and to have no position when
it the price is above

1. The signal function could look like this.

signal <- function () {

if (Close() < 3200)

1

else

0

}

If you like to write clever code, you may as well have written this:

signal <- function ()

Close() < 3200

The logical value of the comparison Close() < 3200 would be converted to either 0 or 1. But
the more verbose version above is clearer.1

We call btest and check the results.

solution <- btest(prices = prices , signal = signal)

trade_details(solution , prices)

price suggest position wealth cash

1 3182 0 0 0 0

2 3205 1 1 0 -3205

3 3272 0 0 67 67

4 3185 0 0 67 67

5 3201 1 1 67 -3134

6 3236 0 0 102 102

1Remember what Brian Kernighan said: Everyone knows that debugging is twice as hard as writing a program in
the first place. So if you’re as clever as you can be when you write it, how will you ever debug it?

53

5 Backtesting

7 3272 0 0 102 102

8 3224 0 0 102 102

9 3194 0 0 102 102

10 3188 1 1 102 -3086

11 3213 1 1 127 -3086

(Yes, this strategy works better than the simple buy-and-hold, but I hope you agree that this is
only because of luck.)

The argument initial.position specifies the initial position; default is no position. Suppose
we had already held one unit of the asset.

solution <- btest(prices = prices , signal = signal ,

initial.position = 1)

Then the results would have looked as follows.

trade_details(solution , prices)

price suggest position wealth cash

1 3182 1 1 3182 0

2 3205 1 1 3205 0

3 3272 0 0 3272 3272

4 3185 0 0 3272 3272

5 3201 1 1 3272 71

6 3236 0 0 3307 3307

7 3272 0 0 3307 3307

8 3224 0 0 3307 3307

9 3194 0 0 3307 3307

10 3188 1 1 3307 119

11 3213 1 1 3332 119

In the example above, we use the close price, but we do not access the data directly. A function
Close is defined by btest and passed as an argument to signal. Note that we do not add it as
a formal argument to signal since this is done automatically. In fact, doing it manually would
trigger an error message:

signal <- function(Close = NULL) ## ERROR: argument name

1 ## 'Close ' not allowed

Error in btest(prices = prices , signal = signal) :

'Close ' cannot be used as an argument name for 'signal '

Similarly, we have functions Open, High and Low; see Section 5.3 above for all functions.

54

5.4 Examples: A single asset

Suppose we wanted to add a variable: a threshold that tells us when to buy. This would need
to be an argument to signal; it would also need to be passed with the ... argument of btest.

signal <- function(threshold) {

if (Close() < threshold)

1

else

0

}

solution <- btest(prices = prices ,

signal = signal ,

threshold = 3190)

trade_details(solution , prices)

price suggest position wealth cash

1 3182 0 0 0 0

2 3205 1 1 0 -3205

3 3272 0 0 67 67

4 3185 0 0 67 67

5 3201 1 1 67 -3134

6 3236 0 0 102 102

7 3272 0 0 102 102

8 3224 0 0 102 102

9 3194 0 0 102 102

10 3188 0 0 102 102

11 3213 1 1 102 -3111

So far we have treated Close as a function without arguments, but actually it has an argument
lag that defaults to 1. Suppose the rule were to buy if the last close is below the second-to-last
close. signal could look like this.

signal <- function () {

if (Close(1L) < Close(2L))

1

else

0

}

We could also have written (Close() < Close(2L)). In any case, the rule uses the close prices
of yesterday and of the day before yesterday, so we need to increase b.

trade_details(btest(prices = prices , signal = signal , b = 2),

prices)

55

5 Backtesting

price suggest position wealth cash

1 3182 0 NA NA 0

2 3205 0 0 0 0

3 3272 0 0 0 0

4 3185 0 0 0 0

5 3201 1 1 0 -3201

6 3236 0 0 35 35

7 3272 0 0 35 35

8 3224 0 0 35 35

9 3194 1 1 35 -3159

10 3188 1 1 29 -3159

11 3213 1 1 54 -3159

If we want to trade a different size, we have signal return the desired value.

signal <- function ()

if (Close() < 3200)

2 else 0

trade_details(btest(prices = prices , signal = signal), prices)

price suggest position wealth cash

1 3182 0 0 0 0

2 3205 2 2 0 -6410

3 3272 0 0 134 134

4 3185 0 0 134 134

5 3201 2 2 134 -6268

6 3236 0 0 204 204

7 3272 0 0 204 204

8 3224 0 0 204 204

9 3194 0 0 204 204

10 3188 2 2 204 -6172

11 3213 2 2 254 -6172

A often-used way to specify a trading strategy is to map past prices into +1, 0 or -1 for long, flat
or short. A signal is often only given at a specified point (like in ‘buy one unit now’). Example:
suppose the third day is a Thursday, and our rule says ‘buy after Thursday’.

signal <- function ()

if (Time() == 3L)

1 else 0

trade_details(btest(prices = prices , signal = signal),

56

5.4 Examples: A single asset

prices)

price suggest position wealth cash

1 3182 0 0 0 0

2 3205 0 0 0 0

3 3272 0 0 0 0

4 3185 1 1 0 -3185

5 3201 0 0 16 16

6 3236 0 0 16 16

7 3272 0 0 16 16

8 3224 0 0 16 16

9 3194 0 0 16 16

10 3188 0 0 16 16

11 3213 0 0 16 16

But this is not what we wanted. If the rule is to buy and then keep the long position, we should
have written it like this.

signal <- function ()

if (Time() == 3L)

1 else Portfolio ()

The function Portfolio evaluates to last period’s portfolio. Like Close, its first argument sets
the time lag, which defaults to 1.

trade_details(btest(prices = prices , signal = signal), prices)

prices sp asset.1 wealth cash

1 3182 0 0 0 0

2 3205 0 0 0 0

3 3272 0 0 0 0

4 3185 1 1 0 -3185

5 3201 1 1 16 -3185

6 3236 1 1 51 -3185

7 3272 1 1 87 -3185

8 3224 1 1 39 -3185

9 3194 1 1 9 -3185

10 3188 1 1 3 -3185

11 3213 1 1 28 -3185

We may also prefer to specify signal so that it evaluates to a weight; for instance, after a
portfolio optimisation. In such a case, you need to set convert.weights to TRUE. (Make sure to
have a meaningful initial wealth: 5 percent of nothing is nothing.)

57

5 Backtesting

signal <- function ()

0.05

solution <- btest(prices = prices ,

signal = signal ,

initial.cash = 100,

convert.weights = TRUE)

trade_details(solution , prices)

prices sp asset.1 wealth cash

1 3182 0.00000 0.00000 100 100.0

2 3205 0.00157 0.00157 100 95.0

3 3272 0.00156 0.00156 100 95.0

4 3185 0.00153 0.00153 100 95.1

5 3201 0.00157 0.00157 100 95.0

6 3236 0.00156 0.00157 100 95.0

7 3272 0.00155 0.00155 100 95.0

8 3224 0.00153 0.00153 100 95.1

9 3194 0.00155 0.00155 100 95.0

10 3188 0.00157 0.00157 100 95.0

11 3213 0.00157 0.00157 100 95.0

Note that until now we – potentially – rebalanced in every period. If you do not want that, we
need to specify do.rebalance.

do.rebalance <- function () {

if (sum(abs(

SuggestedPortfolio (0) - SuggestedPortfolio ())) > 2e-5)

TRUE

else

FALSE

}

solution <- btest(prices = prices ,

signal = signal ,

initial.cash = 100,

do.rebalance = do.rebalance ,

convert.weights = TRUE)

trade_details(solution , prices)

price suggest position wealth cash

1 3182 0.0000 0.0000 100 100.00

58

5.4 Examples: A single asset

2 3205 0.0000 0.0000 100 100.00

3 3272 0.0000 0.0000 100 100.00

4 3185 0.0306 0.0306 100 2.66

5 3201 0.0000 0.0000 100 100.49

6 3236 0.0000 0.0000 100 100.49

7 3272 0.0000 0.0000 100 100.49

8 3224 0.0000 0.0000 100 100.49

9 3194 0.0000 0.0000 100 100.49

10 3188 0.0000 0.0000 100 100.49

11 3213 0.0000 0.0000 100 100.49

do.rebalance is called after signal. Hence, the suggested position is known and the lag should
be zero (’SuggestedPortfolio(0)’).

The tol argument works similarly: it instructs btest to only rebalance when the maximum
absolute suggested change in any single position is greater than tol. Default is 0.00001, which
practically means always rebalance.

solution <- btest(prices = prices ,

signal = signal ,

initial.cash = 100,

tol = 2e-5,

convert.weights = TRUE)

trade_details(solution , prices)

prices sp asset.1 wealth cash

1 3182 0.00000 0.00000 100 100.0

2 3205 0.00157 0.00157 100 95.0

3 3272 0.00156 0.00157 100 95.0

4 3185 0.00153 0.00153 100 95.1

5 3201 0.00157 0.00157 100 95.0

6 3236 0.00156 0.00157 100 95.0

7 3272 0.00155 0.00155 100 95.0

8 3224 0.00153 0.00155 100 95.0

9 3194 0.00155 0.00155 100 95.0

10 3188 0.00157 0.00155 100 95.0

11 3213 0.00157 0.00157 100 95.0

Passing environments

To keep information persistent, we can use environments. As an example, we store (and up-
date) the most recent entry price.

59

5 Backtesting

notepad <- new.env()

notepad$entry <- numeric(length(prices))

signal <- function(threshold , notepad) {

notepad$entry[Time(0L)] <- notepad$entry[Time(1L)]

if (Close() < threshold) {

if (Portfolio () < 1)

notepad$entry[Time(0L)] <- Close(0L)

1

} else {

0

}

}

solution <- btest(prices = prices ,

signal = signal ,

threshold = 3200,

notepad = notepad)

cbind(trade_details(solution , prices), entry = notepad$entry)

price suggest position wealth cash entry

1 3182 0 0 0 0 0

2 3205 1 1 0 -3205 3205

3 3272 0 0 67 67 3205

4 3185 0 0 67 67 3205

5 3201 1 1 67 -3134 3201

6 3236 0 0 102 102 3201

7 3272 0 0 102 102 3201

8 3224 0 0 102 102 3201

9 3194 0 0 102 102 3201

10 3188 1 1 102 -3086 3188

11 3213 1 1 127 -3086 3188

Let us check.

subset(journal(solution), amount > 0)

btest provides an environment Globals for exactly such purposes.

signal <- function(threshold) {

Globals$entry[Time(0L)] <- Globals$entry[Time(1L)]

if (Close() < threshold) {

60

5.5 Examples: Several assets

if (Portfolio () < 1)

Globals$entry[Time(0L)] <- Close(0L)

1

} else {

0

}

}

solution <- btest(prices = prices ,

signal = signal ,

threshold = 3200,

include.data = TRUE)

cbind(trade_details(solution , prices),

entry = solution$Globals$entry)

price suggest position wealth cash entry

1 3182 0 0 0 0 NA

2 3205 1 1 0 -3205 3205

3 3272 0 0 67 67 3205

4 3185 0 0 67 67 3205

5 3201 1 1 67 -3134 3201

6 3236 0 0 102 102 3201

7 3272 0 0 102 102 3201

8 3224 0 0 102 102 3201

9 3194 0 0 102 102 3201

10 3188 1 1 102 -3086 3188

11 3213 1 1 127 -3086 3188

5.5 Examples: Several assets

It does not really make a difference whether btest is called with a single or with several in-
struments. The pattern in signal is still to call Close() and friends to obtain data, but now
these functions will return matrices with more than one column. For instance, when you have
5 assets, then Close(n = 250) would return a matrix of size 250 times 5.

5.5.1 A simple example

prices1 <- c(100,98, 98, 97, 96, 98 ,97 ,98 ,99 ,101)

prices2 <- c(100 ,99 ,100 ,102 ,101 ,100 ,96 ,97 ,95 ,82)

61

5 Backtesting

prices <- cbind(A = prices1 , B = prices2)

signal <- function ()

if (Close ()[1L] > Close ()[2L])

c(2, 0) else c(0, 1)

(solution <- btest(prices = list(prices),

signal = signal ,

b=2))

trade_details <- function(solution , prices)

data.frame(price = prices ,

suggest = solution$suggested.position ,

position = solution$position , ## do not unname

wealth = solution$wealth ,

cash = solution$cash)

trade_details(solution , prices)

price.A price.B suggest.A suggest.B position.A position.B wealth cash

1 100 100 0 0 NA NA NA

0

2 98 99 0 0 0 0 0

0

3 98 100 0 1 0 1 0 -100

4 97 102 0 1 0 1 2 -100

5 96 101 0 1 0 1 1 -100

6 98 100 0 1 0 1 0 -100

7 97 96 0 1 0 1 -4 -100

8 98 97 2 0 2 0 -3 -199

9 99 95 2 0 2 0 -1 -199

10 101 82 2 0 2 0 3 -199

journal(solution)

instrument timestamp amount price

1 B 3 1 100

2 A 8 2 98

3 B 8 -1 97

3 transactions

62

5.6 Common tasks

5.6 Common tasks

There is more than one way to accomplish a certain task.

5.6.1 Remembering an entry price

In signal, assign the current price (with lag 0) to Globals. (That is easiest because do.rebalance
may not be defined.)

5.6.2 Delaying signals

Add a random variable to to do.rebalance:

if (runif (1) > prob_of_delay)

TRUE else FALSE

If TRUE, rebalancing will take place.

5.6.3 Specifying when to compute a signal and trade

btest takes two functions, do.signal and do.rebalance, that tell the algorithm when to com-
pute a new portfolio and when to rebalance. There are different ways to specify these dates:
as a function that returns TRUE or FALSE (most general), but also as integers, logicals or actual
timestamps (e.g. dates).

Supplying particular timestamps is useful when you know you want to trade on a specific
calendar day, say. That is OK because you know in advance when this calendar is going to
be. But be careful when you use other information to specify when to trade. The following
examples are not equivalent:

btest(prices = prices ,

signal = signal ,

do.signal = prices > 3600)

btest(prices = prices ,

signal = signal ,

do.signal = function () Close() > 3600)

Loosely speaking, both variations compute a signal and trade only when prices is above 3600.
But in the first version, there will be no time lag: if the prices exceeds 3600 at time ti, we will

63

5 Backtesting

trade at ti. In the second example, Close() comes with a default lag of 1: if the price exceeds
3600 at ti, we will trade at ti+1, which is the more realistic case.

When timestamp is of a type that can be coerced to Date, you can also use the keywords
firstofmonth and lastofmonth:

btest(prices = prices ,

signal = signal ,

do.signal = "firstofmonth")

5.6.4 Writing a log

Specify the function print.info. The function is called at the very end of an iteration, so it is
best to use no time lag. An example

1 print.info <- function () {

2 cat("Time",

3 sprintf("%2d", Time(0L)), "...",

4 sprintf("%3d", Wealth (0L)), "\n")

5 flush.console ()

6 }

And since cat has a file argument, you can have it write such information into a logfile.

5.6.5 Selecting parameters: calling btest recursively

Suppose you have a strategy that depends on a parameter vector θ . For a given θ , the signal
for the strategy would look like this.

signal <- function(theta) {

compute position as a function of theta

}

Now suppose we do not know theta. We might want to test several values, and then keep the
best one. For this, we need to call btest recursively: at a point in time t, the strategy simulates
the results for various values for theta and chooses the best theta, according to some criterion
f.

A useful idiom is this:

signal <- function(theta) {

if (not defined theta) {

- run btest with theta_1, ... \theta_n, select best theta

64

5.6 Common tasks

- theta = argmin_theta f(btest(theta_i))

}

compute position as a function of theta

}

btestwill first be invoked without θ (or NULL). When the function calls signal, θ is not defined
and signal will call btest with a specified θ .

Let us look at an actual example.

require("tseries")

require("zoo")

require("runStats")

tmp <- get.hist.quote ("^ GSPC",

start = "2010 -01 -01" ,

end = "2013 -12 -31" , quote = "Close ")

signal <- function(Data) {

if (is.na(Data$N)) {

message(Timestamp (0))

price <- Close(n = 500)

Ns <- c(10 ,20)

Data1 <- list(N = 10, hist = 200)

res1 <- btest(price , signal , Data = Data1 , b = 200)

Data2 <- list(N = 20, hist = 200)

res2 <- btest(price , signal , Data = Data2 , b = 200)

message("N 10 : ", round(tail(res1$wealth , 1), 2))

message("N 20 : ", round(tail(res2$wealth , 1), 2))

N <- if (tail(res1$wealth , 1) > tail(res2$wealth , 1))

10

else

20

message("N is ---> ", N, "\n")

} else {

65

5 Backtesting

N <- Data$N

}

##

price <- Close(n = Data$hist)

MA <- runStats("mean", price , N = N)

pos <- 0

if (Close() > tail(MA, 1))

pos <- 1

pos

}

Data <- list(N = NA, hist = 200)

res <- btest(tmp$Close , signal ,

Data = Data ,

b = 500,

initial.cash = 100,

convert.weights = TRUE ,

timestamp = index(tmp))

par(mfrow = c(2,1))

plot(index(tmp), res$wealth , type = "s")

plot(tmp)

66

6 Rebalancing a portfolio

The function rebalance computes the transactions necessary for moving from one portfolio to
another.

6.1 Usage with unnamed vectors

The current portfolio is given in currency units; the target portfolio is given in weights. To
compute the required order sizes, we also need the current prices of the assets. When current,
target and price are unnamed, the assets’ positions in the vectors need to match.

1 current <- c(0 ,0 ,100 ,100)

2 prices <- c(1,1,1,1)

3 target <- c(0.25, 0.25, 0.25, 0.25)

4 rebalance(current , target , prices , match.names = FALSE)

price current value % target value % order

1 1 0 0 0.0 50 50 25.0 50

2 1 0 0 0.0 50 50 25.0 50

3 1 100 100 50.0 50 50 25.0 -50

4 1 100 100 50.0 50 50 25.0 -50

Notional: 200. Amount invested: 200. Total (2-way) turnover: 200.

The current portfolio may also be empty, in which case current can be set to 0. Then, of course,
we need to specify a notional for the target portfolio.

current <- 0

rebalance(current , target , prices ,

match.names = FALSE , notional = 100)

price current value % target value % order

1 1 0 0 0.0 25 25 25.0 25

2 1 0 0 0.0 25 25 25.0 25

3 1 0 0 0.0 25 25 25.0 25

4 1 0 0 0.0 25 25 25.0 25

67

6 Rebalancing a portfolio

Notional: 100. Amount invested: 100. Total (2-way) turnover: 100.

We may also specify the target portfolio as a single number.

current <- c(5, 5, 100, 100)

target <- 0 ## liquidate the portfolio

rebalance(current , target , prices , match.names = FALSE)

price current value % target value % order

1 1 5 5 2.4 0 0 0.0 -5

2 1 5 5 2.4 0 0 0.0 -5

3 1 100 100 47.6 0 0 0.0 -100

4 1 100 100 47.6 0 0 0.0 -100

Notional: 210. Amount invested: 0. Total (2-way) turnover: 210.

every assets gets a weight of 20%

target <- 0.2

rebalance(current , target , prices , match.names = FALSE , notional = 100)

price current value % target value % order

1 1 5 5 5.0 20 20 20.0 15

2 1 5 5 5.0 20 20 20.0 15

3 1 100 100 100.0 20 20 20.0 -80

4 1 100 100 100.0 20 20 20.0 -80

Notional: 100. Amount invested: 80. Total (2-way) turnover: 190.

6.2 Usage with named vectors

More usefully, rebalance can also use the names of the vectors current, target and price. The
argument match.names must be set to TRUE for this (which is the default, actually).

prices <- c(1,1,1,1)

names(prices) <- letters [1:4]

current <- c(a = 0, b = 10)

target <- c(a = 0, d = 0.5)

rebalance(current , target , prices)

68

6.3 Optimisation

price current value % target value % order

b 1 10 10 100.0 0 0 0.0 -10

d 1 0 0 0.0 5 5 50.0 5

Notional: 10. Amount invested: 5. Total (2-way) turnover: 15.

To also show all instruments, set the argument drop.zero to FALSE.

print(rebalance(current , target , prices), drop.zero = FALSE)

price current value % target value % order

a 1 0 0 0.0 0 0 0.0 0

b 1 10 10 100.0 0 0 0.0 -10

d 1 0 0 0.0 5 5 50.0 5

Notional: 10. Amount invested: 5. Total (2-way) turnover: 15.

6.3 Optimisation

Whenever you need to round positions, you may prefer to do an actual optimisation. The
ideal place for this optimisation is the original objective function, not in rebalance. And the
differences, if there are any at all, are typically small. But here is an example.

n <- 10

target <- runif(n)

target <- target/sum(target)

price <- sample (10:200 , n, replace = TRUE)

s <- sample(c(1,5,10,100), n, replace = TRUE ,

prob = c(0.4 ,0.4 ,0.1 ,0.1))

data.frame(price = price , lot.size = s)

price lot.size

1 178 5

2 37 5

3 62 5

4 93 1

5 81 5

6 111 5

7 146 5

8 154 5

9 187 1

10 138 1

69

6 Rebalancing a portfolio

Now suppose we have only a limited budget available.

budget <- 10000

x <- rebalance(0, target , notional = budget ,

price = price , match.names = FALSE)

x

price current value % target value % order

1 178 0 0 0.0 4 712 7.1 4

2 37 0 0 0.0 40 1480 14.8 40

3 62 0 0 0.0 20 1240 12.4 20

4 93 0 0 0.0 16 1488 14.9 16

5 81 0 0 0.0 13 1053 10.5 13

6 111 0 0 0.0 6 666 6.7 6

7 146 0 0 0.0 4 584 5.8 4

8 154 0 0 0.0 6 924 9.2 6

9 187 0 0 0.0 5 935 9.3 5

10 138 0 0 0.0 7 966 9.7 7

Notional: 10000. Amount invested: 10048. Total (2-way) turnover: 10048.

Now we use TAopt, from the NMOF package, to find the optimal integer portfolio.

require("NMOF")

ediff <- function(x) {

tmp <- x*price/budget - target

sum(tmp*tmp)

}

neighbour <- function(x) {

i <- sample.int(length(x), size = 1L)

x[i] <- x[i] + if (runif (1) > 0.5) - s[i] else s[i]

x

}

sol <- TAopt(ediff ,

algo = list(x0 = numeric(length(price)),

neighbour = neighbour ,

q = 0.1,

nS = 1000,

printBar = FALSE))

Threshold Accepting.

70

http://enricoschumann.net/NMOF.htm

6.4 Substituting a basket by its components

Computing thresholds ... OK.

Estimated remaining running time: 0.23 secs.

Running Threshold Accepting ...

Initial solution: 0.109341

Finished.

Best solution overall: 0.001108741

df <- data.frame(TA = sol$xbest , rounded = s*round(x$target/s))

df[apply(df, 1, function(i) any(i != 0)),]

TA rounded

1 5 5

2 40 40

3 20 20

4 16 16

5 15 15

6 5 5

7 5 5

8 5 5

9 5 5

10 7 7

The difference.

ediff(sol$xbest) - ediff(s*round(x$target/s))

[1] 0

6.4 Substituting a basket by its components

If you run tests with baskets of instruments or whole strategies, you often need to substitute
the components of the basket for overall basket. pmwr provides a function replace_weight

that helps with this task. (It is also helpful if you have hierarchies of benchmarks or want to
do a ‘lookthrough’ through a subportfolio within your portfolio.)

Suppose we have this weight vector:

w <- c(basket_1 = 0.3,

basket_2 = 0.5,

basket_3 = 0.2)

71

6 Rebalancing a portfolio

We also know what the first two baskets represent.

b1 <- c(a = 0.5, b = 0.2, c = 0.3)

b2 <- c(d = 0.1, e = 0.2, a = 0.7)

Now we can call replace_weight.

replace_weight(w,

basket_1 = b1,

basket_2 = b2)

basket_1::a basket_1::b basket_1::c

0.15 0.06 0.09

basket_2::d basket_2::e basket_2::a

0.05 0.10 0.35

basket_3

0.20

If the names of the baskets or of the things in the baskets have spaces or other characters that
cause trouble, quote them.

replace_weight(c("basket 1" = 0.3,

"basket 2" = 0.7),

"basket 1" = b1,

"basket 2" = b2)

72

7 Summarising portfolio time-series

Strategies or portfolios are often analysed purely through their price (a.k.a. NAV or equity)
series: because more-detailed data may not be available (e.g. for a fund); or because it is more
convenient to abstract from the position level to the NAV level.

To handle such series, pmwr uses an S3 class NAVseries. (I will write NAV series for the actual
data series and NAVseries for the specific implementation.) AnNAV series is nothingmore than
a time-series: a vector of NAVs, together with a vector of timestamps. Then why not simply
use an existing time-series class, such as zoo? One reason is clarity. A zoo or xts object is much
more general than an NAV series: it may represent more than one series; or it may represent,
for instance, returns. An NAV series promises to represent NAVs (i.e. levels, not changes in
levels) of a single series, nothing else. Furthermore, defining our own class allows us to define
specific methods where appropriate; while the same time we may piggyback on existing time-
series methods by defining methods for coercion, e.g. as.zoo.NAVseries or as.xts.NAVseries.

7.1 Creating NAVseries

The pmwr package provide a data frame DAX. DAX stands for Deutscher Aktienindex (German
Equity Index), and the data frame contains closing prices of the index, with the timestamps
stored as rownames.

str(DAX)

head(DAX)

'data.frame ': 505 obs. of 1 variable:

$ DAX: num 9400 9435 9428 9506 9498 ...

DAX

2014 -01 -02 9400.04

2014 -01 -03 9435.15

2014 -01 -06 9428.00

2014 -01 -07 9506.20

2014 -01 -08 9497.84

2014 -01 -09 9421.61

We first transform the data frame into an NAVseries by calling the function of the same name.

73

7 Summarising portfolio time-series

dax <- NAVseries(DAX[[1]], as.Date(row.names(DAX)), title = "DAX")

dax

DAX

02 Jan 2014 ==> 30 Dec 2015 (505 data points , 0 NAs)

9400.04 10743

7.2 Methods

Most useful is probably the summary method.

summary(dax)

DAX

02 Jan 2014 ==> 30 Dec 2015 (505 data points , 0 NAs)

9400.04 10743

High 12374.73 (10 Apr 2015)

Low 8571.95 (15 Oct 2014)

Return (%) 6.9 (annualised)

Max. drawdown (%) 23.8

_ peak 12374.73 (10 Apr 2015)

_ trough 9427.64 (24 Sep 2015)

_ underwater now (%) 13.2

Volatility (%) 18.0 (annualised)

_ upside 14.4

_ downside 10.4

Monthly returns

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec YTD

2014 -1.0 4.1 -1.4 0.5 3.5 -1.1 -4.3 0.7 0.0 -1.6 7.0 -1.8 4.3

2015 9.1 6.6 5.0 -4.3 -0.4 -4.1 3.3 -9.3 -5.8 12.3 4.9 -5.6 9.6

There are a few other methods, e.g. to coercion to zoo. There is als a generic as.NAVseries for
coercion to an NAVseries.

74

7.2 Methods

There is also a convenience method for btest objects (see Chapter Backtesting), which extract
the equity series from backtests.

For summaries of NAV series, a method for toLatex can be used to fill LATEX-templates. The
package comes with a vignette that provides examples.

75

8 Analysing trades

For some strategies, or trading approaches, we may prefer to analyse trades, not equity series.
(A case in point are intraday strategies, which have no exposure over night.) That is, we do not
evaluate the strategy’s at pre-defined, usually equally-spaced points in time, but rather split
the trading history the history into separate trades.

8.1 Exposure

We have the following trades and times.

amount <- c(1,3,-3,1,-3,1)

time <- c(0,1,3,4,7,12)

The holding period (duration) of these trades can be computed so:

data.frame(position = cumsum(amount)[-length(amount)],

from = time[-length(time)],

to = time[-1L],

duration = diff(time))

position from to duration

1 1 0 1 1

2 4 1 3 2

3 1 3 4 1

4 2 4 7 3

5 -1 7 12 5

We can plot the exposure.

plot(c(time[1], time), cumsum(c(0, amount)),

type = "s", xlab = "time", ylab = "position")

77

8 Analysing trades

0 2 4 6 8 10 12

−
1

0
1

2
3

4

time

po
si

tio
n

Thus, we have had a position from time 0 to time 12 (hours into the trading day, say), but its
size varied. The function twExposure (time-weighted exposure) computes the average absolute
exposure.

tw_exposure(amount , time)

1.75

To give a simpler example: suppose we bought at the open of a trading day and sold at noon.
The average exposure for the day is thus half a contract.

amount <- c(1, -1 , 0)

time <- c(0,0.5,1)

tw_exposure(amount , time)

0.5

If we bought at the open, went short at noon, and closed the position at the end of the day, the
average exposure would be one contract, since absolute position size is relevant.

78

8.2 Splitting and rescaling

amount <- c(1, -2 , 1)

time <- c(0,0.5,1)

tw_exposure(amount , time)

1

8.2 Splitting and rescaling

We have the following trades.

timestamp <- 1:3

amount <- c(-1,2,-1)

price <- c(100 ,99 ,101)

Calling split_trades will return a list of two single trades. Each single trade, in turn, is a list
with components amount, price and timestamp.

split_trades(amount , price , timestamp , aggregate = FALSE)

[[1]]

[[1]]$amount

[1] -1 1

[[1]]$price

[1] 100 99

[[1]]$timestamp

[1] 1 2

[[2]]

[[2]]$amount

[1] 1 -1

[[2]]$price

[1] 99 101

[[2]]$timestamp

[1] 2 3

79

8 Analysing trades

Note that the second transaction (buy 2 @ 99) has been split up: one contract sold closes the
first trade; the other contract opens the second trade.

That is useful in its own right: there are accounting systems around that cannot handle a trade
switches a trade directly from long to short, or vice versa. Instead, the trade needs first be
closed (i.e. the net position becomes zero).

With argument aggregate set to TRUE, the function reconstructs the total series, but with those
trades that change the position sign splitted.

split_trades(amount , price , timestamp , aggregate = TRUE)

$amount

[1] -1 1 1 -1

$price

[1] 100 99 99 101

$timestamp

[1] 1 2 2 3

Another example. We have the following trades and impose a limit that the maximum absolute
exposure for the trader should only be 2.

timestamp <- 1:6

amount <- c(-1,-1,-1,1,1,1)

price <- c(100 ,99 ,98 ,98 ,99 ,100)

limit(amount , price , timestamp , lim = 2)

$amount

[1] -1 -1 1 1

$price

[1] 100 99 99 100

$timestamp

[1] 1 2 5 6

Scaling the trades.

scale_to_unity(n)

[1] -0.333 -0.333 -0.333 0.333 0.333 0.333

Closing the trade at once.

80

8.2 Splitting and rescaling

close_on_first(n)

[1] -1 -1 -1 3 0 0

81

9 Scaling series

Visual comparisons of time-series are ubiquitous in finance.1 The function scale1 helps with
scaling the levels of time-series so that is becomes easier to compare them. It is a generic
function, and PMwR provides methods for numeric vectors/matrices, and for zoo and NAVseries

objects.

9.1 Examples

To explain what the function does, we use two very short time-series: the values of the DAX,
the German stock-market index, and the REXP, a German government-bond index, from 2
January and 8 January 2014 (just 5 trading days). We also combine them into a matrix drax.

dax <- DAX[1:5,]

rexp <- REXP [1:5,]

drax <- cbind(dax , rexp)

Calling scale1 on dax is equivalent to dividing the whole series by its first element.

scale1(dax)

dax/dax[1]

[1] 1.000000 1.003735 1.002974 1.011294 1.010404

[1] 1.000000 1.003735 1.002974 1.011294 1.010404

Lest you skip the rest of the section: scale1 comes with several additional features.

It is common, too, to scale to a level of 100. We either multiply the whole series by 100, or use
the level argument.

scale1(dax , level = 100)

[1] 100.0000 100.3735 100.2974 101.1294 101.0404

1Transformating or scaling data are a key element of exploratory data analysis in general. See Tukey’s EDA (1977).
TODO: find H. Simon reference on scaling (taking reciprocal value).

83

9 Scaling series

If we give a matrix to scale1, the function scales each column separately.

scale1(drax , level = 100)

dax rexp

[1,] 100.0000 100.0000

[2,] 100.3735 100.0611

[3,] 100.2974 100.2316

[4,] 101.1294 100.2939

[5,] 101.0404 100.2807

scale1 is a generic function; it works, for instance, with zoo objects.

library("zoo")

(drax.zoo <-scale1(zoo(drax , as.Date(row.names(DAX)[1:5])) ,

level = 100))

dax rexp

2014 -01 -02 100.0000 100.0000

2014 -01 -03 100.3735 100.0611

2014 -01 -06 100.2974 100.2316

2014 -01 -07 101.1294 100.2939

2014 -01 -08 101.0404 100.2807

plot(drax.zoo , plot.type = "single", col = c("darkblue", "darkgreen"))

84

9.1 Examples

Thu Fri Sat Sun Mon Tue Wed

10
0.

0
10

0.
4

10
0.

8

Index

dr
ax

.z
oo

The argument when defines the origin.

scale1(drax , when = 3, level = 100)

dax rexp

[1,] 99.70344 99.76890

[2,] 100.07584 99.82987

[3,] 100.00000 100.00000

[4,] 100.82944 100.06208

[5,] 100.74077 100.04899

With a zoo object, when should be compatible with the class of the object’s index.

scale1(drax.zoo , when = as.Date("2014 -01 -07"), level = 100)

dax rexp

2014 -01 -02 98.88326 99.70701

2014 -01 -03 99.25259 99.76794

2014 -01 -06 99.17738 99.93796

85

9 Scaling series

2014 -01 -07 100.00000 100.00000

2014 -01 -08 99.91206 99.98692

when also understands the keyword first.complete, which is actually the default. That is useful
when series have different lengths.

drax [1:2, 1] <- NA

drax

dax rexp

[1,] NA 440.5252

[2,] NA 440.7944

[3,] 9428.00 441.5456

[4,] 9506.20 441.8197

[5,] 9497.84 441.7619

scale1(drax , level = 100) ## 'first.complete ' is the default

dax rexp

[1,] NA 99.76890

[2,] NA 99.82987

[3,] 100.0000 100.00000

[4,] 100.8294 100.06208

[5,] 100.7408 100.04899

When the argument centre is TRUE, the mean return is subtracted from the returns.

scale1(drax.zoo , centre = TRUE)

dax rexp

2014 -01 -02 1.0000000 1.000000

2014 -01 -03 1.0011441 0.999910

2014 -01 -06 0.9977916 1.000913

2014 -01 -07 1.0034825 1.000833

2014 -01 -08 1.0000000 1.000000

The default is to subtract the geometric mean: the series will have a growth rate of zero; it will
end where it started.

The argument scale takes a standard deviation and scales the returns to that standard devia-
tion.

apply(returns(scale1(drax.zoo , scale = 0.02)) , 2, sd)

86

9.1 Examples

dax rexp

0.02 0.02

Thismay create fairer comparisons, for instance, between fund prices that exhibit very different
volatilities.

scale1(drax.zoo , scale = 0.02)

dax rexp

2014 -01 -02 1.000000 1.000000

2014 -01 -03 1.017123 1.016175

2014 -01 -06 1.013590 1.062012

2014 -01 -07 1.052132 1.079462

2014 -01 -08 1.047890 1.075724

It should be stressed that centre and scale treat returns, but scale1 expects and returns levels
(not returns).

The zoo method has a further argument that affects returns: inflate. To illustrate its use, let
us create a constant series.

z <- zoo(100,

seq(from = as.Date("2015-1-1"),

to = as.Date("2016-1-1"),

by = "1 day"))

head(z)

tail(z)

2015 -01 -01 2015 -01 -02 2015 -01 -03 2015 -01 -04 2015 -01 -05 2015 -01 -06

100 100 100 100 100 100

2015 -12 -27 2015 -12 -28 2015 -12 -29 2015 -12 -30 2015 -12 -31 2016 -01 -01

100 100 100 100 100 100

inflate should be a numeric value: the annual growth rate that is added to the time-series’s
return (or that is subtracted from it, if negative).

head(scale1(z, inflate = 0.02))

tail(scale1(z, inflate = 0.02))

2015 -01 -01 2015 -01 -02 2015 -01 -03 2015 -01 -04 2015 -01 -05 2015 -01 -06

1.000000 1.000054 1.000109 1.000163 1.000217 1.000271

2015 -12 -27 2015 -12 -28 2015 -12 -29 2015 -12 -30 2015 -12 -31 2016 -01 -01

1.019723 1.019779 1.019834 1.019889 1.019945 1.020000

87

9 Scaling series

9.2 Scaling a series

The previous section provided examples of scaling series. In this section, we are going to see
how scale1 does its computations.

First, a series P passed to scale1 is transformed into returns, R. The scale argument allows you
to set a desired volatility, defined as the standard deviation, for the returns. The computation
uses the fact that multiplying a random variable by a number b changes its variance to b2 times
its original variance. Hence, scale1 divides the returns by the actual standard deviation and
then multiplies them by the desired one.

Changing total return (or average return) is slightly more complicated. Suppose we want to
scale the total return of the series P such that it equals some fixed number. Start with writing
the total return as the product of single-period returns.

P1
P0

P2
P1

· · · PT
PT−1

=
PT
P0

= (1 + r1)(1 + r2)(1 + r3) · · · =
T∏
t=1

1 + rt (9.1)

There clearly is an infinity of possible adjustments that would do the trick. We might, for
instance, change P0 or PT so that the desired return is achieved.

But that is probably not what we want. A reasonable requirement is that the scaling touches
as few other statistical properties as possible. Adding a constant z to the return in every period
does that: it does not change the volatility of the returns; neither does it affect linear or rank
correlation of the returns with some other series. Define r∗ as the desired total return, we need
to solve the following equation for z.

(1 + r1 + z)(1 + r2 + z)(1 + r3 + z) · · · = 1 + r∗ (9.2)

Alternatively, we may use logs.∑
i

log(1 + ri + z) = log(1 + r∗) (9.3)

This is a classical application for root-finding (see chapter 11 of (Gilli, Maringer, and Schumann,
2011)), for which we use uniroot.

P1 <- cumprod (1 + c(0, rnorm(20, sd = 0.02)))

P1_scaled <- scale1(P1, centre = TRUE)

sd(returns(P1))

sd(returns(P1_scaled))

tail(P1 ,1)

tail(P1_scaled ,1)

88

9.2 Scaling a series

[1] 0.01675842

[1] 0.01675842

[1] 1.137895

[1] 1

P2 <- cumprod (1 + c(0, rnorm(20, sd = 0.02)))

P2_scaled <- scale1(P2, centre = TRUE , scale = 0.03)

sd(returns(P2))

sd(returns(P2_scaled))

tail(P2_scaled ,1)

head(P2_scaled ,1)

cor(returns(P1), returns(P2))

cor(returns(P1_scaled), returns(P2_scaled))

[1] 0.01948189

[1] 0.03

[1] 1

[1] 1

[1] 0.1147915

[1] 0.1147915

89

10 Plotting irregularly-spaced series during
trading hours

10.1 An example

We have the following sample of prices of the Bund future contract, traded at the Eurex in
Germany.

times prices
2012-10-18 20:00:09 139.82
2012-10-18 20:01:11 139.82
2012-10-18 20:01:59 139.8
2012-10-18 20:01:29 139.81
2012-10-18 20:16:49 139.77
2012-10-18 20:50:49 139.85
2012-10-18 21:23:19 139.76
2012-10-18 21:41:39 139.76
2012-10-18 21:59:59 139.77
2012-10-19 09:16:10 139.8
2012-10-19 09:49:31 139.86
2012-10-19 21:12:49 140.46
2012-10-19 21:42:31 140.39
2012-10-22 08:45:15 140.14
2012-10-22 09:05:33 140.15

Note that I have left the time zone to the operating system. Since my computer is typically
located in the time zone that the tz database (http://www.iana.org/time-zones) calls ’Eu-
rope/Berlin’, the first time should be 2012-10-18 20:00:09. If, for instance, your computer is
in ’America/Chicago’ instead and you run the above code, the first time would be 2012-10-18

13:00:09. Which is right: it is the correct time, only translated into Chicago local time.

A plot of price against time looks like this.

plot(times , prices , type = "s")

91

http://www.eurexchange.com
http://www.iana.org/time-zones

10 Plotting irregularly-spaced series during trading hours

Fri Sat Sun Mon

13
9.

8
14

0.
0

14
0.

2
14

0.
4

times

pr
ic

es

Such a plot is fine for many purposes. But the contract for which we have prices is only traded
fromMonday to Friday, not onweekends, and it is traded only from 08:00 to 22:00 Europe/Berlin
time. So the plot should omit those times at which no trading takes place. This is what the
function plot_trading_hours does.

tmp <- plot_trading_hours(x = prices , t = times ,

interval = "1 sec", labels = "day",

fromHHMMSS = "080000", toHHMMSS = "220000",

type = "s")

92

10.1 An example

13
9.

8
14

0.
0

14
0.

2
14

0.
4

19.10. 22.10.

What we need for such a plot is a function that maps actual time to a point on the x-scale,
while the y-scale stays unchanged. If we were talking only about days, not times, we needed
something like this:

day x-position mapped x-position
Thursday 1 1
Friday 2 2
Saturday 3 <removed>

Sunday 4 <removed>

Monday 5 3

This mapping is what plot_trading_hours provides. And not much more: the design goal of
the function is to make it as much as possible an ordinary plot; or more specifically, to make it
as similar as possible to the plot function. Indeed, plot_trading_hours calls plot with a small
number of default settings:

list(type = "l", xaxt = "n", xlab = "", ylab = "")

93

10 Plotting irregularly-spaced series during trading hours

These settings can all be overridden through the ... argument, which is passed to plot. Note
that we already set s as the plot’s type in the last code chunk. The only required setting is
suppressing the x-axis with setting xaxt to ’n’, because plot_trading_hourswill create its own
x-axis via a call to axis(1, ...). In case you wish to use your own axis specification, either
set do.plotAxis to FALSE or pass settings to axis through the list axis1.par.

10.2 More examples

10.2.1 Value of plot_trading_hours

Like plot, plot_trading_hours is typically called for its side effect: creating a plot. But it also
returns useful information (invisibly, unless called with do.plot = FALSE).

str(tmp)

List of 6

$ t : int [1:15] 1 63 81 111 1001 3041 4991 6091 7191 11763 ...

$ x : num [1:15] 140 140 140 140 140 ...

$ axis.pos : num [1:2] 7193 57594

$ axis.labels: chr [1:2] "19.10." "22.10."

$ timegrid : POSIXct [1:61527] , format: "2012 -10 -18 20:00:09" ...

$ map : function (t)

This information can be used to add elements to plots. An example follows.

10.2.2 Adding grid lines

We can add grid lines with abline. The y-axis poses no special problem. The positions of the
x-axis ticks are returned from plot_trading_hours.

tmp <- plot_trading_hours(x = prices , t = times ,

interval = "1 sec",

labels = "day",

fromHHMMSS="080000",

toHHMMSS = "220000",

type = "s")

abline(h = axTicks (2), v = tmp$axis.pos ,

col = "lightgrey", lty = "dotted")

94

10.2 More examples

13
9.

8
14

0.
0

14
0.

2
14

0.
4

19.10. 22.10.

If we wan to add to a specific time, say 19 October, 13:10:23, we can use the function map that
the call to plot_trading_hours returns. We first create the specific time with, for example,
ISOdatetime or strptime.

Again , I do not specify a time zone since time zones

depend on the operating system. To reproduce the

example , you may use this representation:

##

mytime <- structure (1350645023 ,

class = c(" POSIXct", "POSIXt"),

tzone = "")

mytime <- ISOdatetime (2012, 10, 19, 13, 10, 23)

mytime

[1] "2012 -10 -19 13:10:23 CEST"

Now we use map to translate this time into the appropriate x-position.

95

10 Plotting irregularly-spaced series during trading hours

tmp <- plot_trading_hours(x = prices , t = times ,

interval = "1 sec", labels = "day",

fromHHMMSS="080000",

toHHMMSS = "220000",

type = "s")

abline(h = axTicks (2), v = tmp$axis.pos ,

col = "lightgrey", lty = "dotted")

abline(v = tmp$map(mytime)$t, col = "red")

13
9.

8
14

0.
0

14
0.

2
14

0.
4

19.10. 22.10.

The function map returns a list with two components, t and ix.

tmp$map(mytime)

$t

[1] 25816

$ix

[1] 1

96

10.2 More examples

The first component is the appropriate position on the x-axis; since it is a time it is called t.
The second component gives the subscripts to values that should actually be plotted. As an
example, suppose that we wish to plot points at several prices at 21:00:00 for several days.

moretimes <- structure(c(1350586800 , 1350673200 , 1350759600) ,

class = c(" POSIXct", "POSIXt"), tzone = "")

##

moretimes <- ISOdatetime (2012, 10, 18:20, 21, 00, 00)

values <- seq(140, 140.20 , length.out = length(moretimes))

data.frame(times = moretimes ,

weekday = format(moretimes , "%A"),

values)

times weekday values

1 2012 -10 -18 21:00:00 Thursday 140.0

2 2012 -10 -19 21:00:00 Friday 140.1

3 2012 -10 -20 21:00:00 Saturday 140.2

But 20 October 2012 falls on a Saturday, and so it does not appear in the plot.

tmp$map(moretimes)

$t

[1] 3592 53993

$ix

[1] 1 2

The values that should be plotted can conveniently be found by using ix.

values[tmp$map(moretimes)$ix]

[1] 140.0 140.1

97

11 Other Tools

11.1 Dividend adjustments

The function div_adjust corrects price series for dividends. It is meant as a low-level function
and is implemented to work on numeric vectors. Consider a hypothetical price series x, which
goes ex-dividend at time 3.

x <- c(9.777 , 10.04, 9.207, 9.406)

div <- 0.7

t <- 3

The default for div_adjust is to match the final price.

div_adjust(x, t, div)

[1] 9.086185 9.330603 9.207000 9.406000

If you prefer a correction that matches the first price, set argument backward to FALSE.

div_adjust(x, t, div , backward = FALSE)

[1] 9.77700 10.04000 9.90700 10.12113

11.2 Stocks splits

The function split_adjust handles stock splits. It is implemented to work on numeric vectors.

11.3 Treasuries quotes

US treasury bonds are often quoted in 1/32nds of points. For instance, the price 110'030 would
mean 110+3/32. The function quote32 provides a way to ‘pretty-print’ such prices.

quote32(c("110 -235", "110 -237"))

99

11 Other Tools

110 -23+

110-23¾

Internally, quote32 will store the prices as numeric values: the fractions are only used for
printing.

as.numeric(quote32(c("110 -235", "110 -237")))

[1] 110.7344 110.7422

11.4 Validating ISINs

An ISIN, which stands for International Securities Identification Number, uniquely identifies a
security.

is_valid_ISIN(c("DE0007236101", ## Siemens

"DE0007236102")) ## last digit changed

[1] TRUE FALSE

11.5 Price tables

A pricetable is a matrix of prices, with some added functionality for subsetting.

11.6 Trees

To normal people, a tree consists of a trunc, branches and leaves. To people who do graph theory,
a tree is a connected graph with only one path between any two nodes.

Trees are useful to represent hierachies – just think of a file tree.

100

12 FAQ/ FRC
(Frequently-required computations)

I have a list of timestamped trades and I need to compute P/L between two points in time, for
instance between yesterday’s evening close and now (intraday).

Call the points in time t0 and t1. The easiest case is if there were no positions at both t0
and t1. In that case, create a journal of your trades, and call pl.

If therewere positions, youwill need the valuation prices for all instrumentswith positions
at both points in time. Then, you can use pl; see arguments initial.position and vprice.

Alternatively, you would arrive at the P/L as follows:

1. Compute the position at t0 and make it a journal J0. The prices need to be the
valuation prices.

2. Take all transactions at t > t0 and t ≤ t1 and put them into a journal J .

3. Compute the position at t1, and make it a journal J1, but {multiply all amounts by
−1}. The prices need to be the valuation prices.

4. Combine J0, J , and J1 and compute the P/L.

How can I compute portfolio returns when I don’t have prices, but only returns of the assets?

Compute artificial prices (e.g. using something like cumprod(c(1, 1 + r))); then use re-

turns.

I have a portfolio with constant weights. How to compute its returns when it is rebalanced at
specific times?

101

12 FAQ/ FRC (Frequently-required computations)

Compute artificial prices, and then use returns: see arguments weights and rebalance.when.
See Section Returns when weights are fixed.

I have a list of trades: instrument, side (buy/sell), quantity, when and at what price. How to
compute the profit and loss for each?

See pl.

I have a list of trades in an instrument and want to plot these trades against the price of the
traded instrument.

Use pl; in particular, pass the prices with vprice.

I have a signal series (+1, 0, 0, +1, …), and need to transform it into a profit-and-loss series.

If these are positions, pass the signals to btest and access them with signals[Time()].

I need to determine the month-to-date profit-and-loss.

1. compute position on last day of last month

2. make journal from position (add prices)

3. combine with journal since month start

4. use ~pl on all instruments

btest: I want to print my current P/L in every period.

Use print.info.

btest: I invest in assets that pay accrued interest.

102

Directly work with the dirty prices. If the signals depend on clean prices, pass them as
extra information and access them with clean_price[Time()]. Alternatively, work with
the clean prices, and use cashflow to add the accrued interest to the cash account.

btest: Can I rebalance more frequently than I compute a signal?

You can, but it does not make sense in the standard setup. That is, no rebalancing will take
place, even if you instruct btest to do so. The reason is that a signal computes a suggested
position (in units of the instrument); once this position has been built up, no more trading
is required. This is even true when using weights: The argument convert.weights is a
convenience that converts weights into a suggested position; btest does not store these
weights, only the suggested position.

103

13 Appendix: Classes and data structures

The following classes are implicitly defined (i.e. they are S3 classes):

journal keeps transactions. Internally, a object of class journal is named list of atomic vectors.

position the numerical positions of different accounts/instruments at specific points in time.
Always stored in a numeric matrix with attributes timestamp and instrument; points in
time are in rows, instruments in columns.

period returns numeric vector (potentially a matrix) with attributes timestamp and period.
The class is called p_returns

instrument term sheet (description etc); it does know nothing about market data – not yet
implemented

cashflow internal – not yet implemented

NAVseries store a time-series of net asset values

pricetable a matrix of NAVs (or prices); each column corresponds to one asset. Additional
attributes instrument and timestamp. Often, pricetables will be created corresponding
to positions.

105

14 Appendix: Notes for developers

14.1 Methods for returns

Methods are responsible for ‘stripping’ the input down do x and t, calling ‘=returns.default=’
or some other method, and then to re-assemble the original class’s structure. When period is
not specified, methods should keep timestamp information for themselves and not pass it on.
That is, returns.default should only ever receive a timestamp when period is specified.

107

15 Appendix: R and package versions used

R version 3.4.2 (2017 -09 -28)

Platform: x86_64-pc-linux -gnu (64-bit)

Running under: Ubuntu 17.04

Matrix products: default

BLAS: /usr/lib/openblas -base/libblas.so.3

LAPACK: /usr/lib/libopenblasp -r0 .2.19. so

locale:

[1] LC_CTYPE=en_US.UTF -8 LC_NUMERIC=C

[3] LC_TIME=en_IE.UTF -8 LC_COLLATE=en_US.UTF -8

[5] LC_MONETARY=en_IE.UTF -8 LC_MESSAGES=en_US.UTF -8

[7] LC_PAPER=en_IE.UTF -8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_IE.UTF -8 LC_IDENTIFICATION=C

attached base packages:

[1] stats graphics grDevices utils datasets methods

[7] base

other attached packages:

[1] rbenchmark_1.0.0 zoo_1.7-14 orgutils_0.4-2

[4] PMwR_0.5-8

loaded via a namespace (and not attached):

[1] datetimeutils_0.2-7 compiler_3.4.2 parallel_3.4.2

[4] fastmatch_1.0-4 crayon_1.3.4 NMOF_1.2-0

[7] grid_3.4.2 textutils_0.1-8 lattice_0.20 -35

109

Bibliography

[1] Dirk Eddelbuettel. nanotime: Nanosecond-Resolution Time for R. R package version 0.1.0.
2017. url: https://CRAN.R-project.org/package=nanotime.

[2] Manfred Gilli, Dietmar Maringer, and Enrico Schumann. Numerical Methods and Opti-
mization in Finance. Elsevier/Academic Press, 2011. url: http://nmof.net.

[3] Enrico Schumann. Numerical Methods and Optimization in Finance (NMOF) – Manual
(Package version 1.1-0). 2011–2017. url: http://enricoschumann.net/NMOF.htm#NMOFmanual.

111

https://CRAN.R-project.org/package=nanotime
http://nmof.net
http://enricoschumann.net/NMOF.htm#NMOFmanual

Index

.returns (function), 34

aggregate.journal(method), 21
annualised returns, 38
as.data.frame.journal (method), 21
as.NAVseries(function), 74

btest (function), 45
burn-in, 46

datetimeutils (R package), 9
DAX, 33
DAXDAX (dataset), 83
distributed computing, 8

functional programming, 8

GitHub, 7

inflate (argument to scale1), 87
is_valid_ISIN (function), 100
ISIN, 100

journal
aggregating journals, 21
backtest, 52
combining journals, 15
comparison with dataframe, 11
concatenating journals, 15
definition, 11
empty journals, 12
print journals (print method), 14
sorting journals, 15
splitting, 18
subsetting, 16

journal (function), 12

lookthrough, 71

nanotime (R package), 14
NAVseries (function), 73
NMOF (R package), 70

Org mode, 7
overnight gap, 92

Packages, see R packages
pl (function), 23
plot_trading_hours (function), 92
position (function), 18
profit/loss

over specific period of time, 29–30
with open trades, 28

quote32 (function), 99

R packages
datetimeutils, 9
nanotime, 14
NMOF, 70
textutils, 9
tsdb, 10
xts, 35
zoo, 35

rebalance
a portfolio, 67
during backtest, 49

rebalance (function), 67
replace_weight (function), 71
returns

mtd, 39
ytd, 39
annualised, 38

113

Index

for calendar period, 36
monthly, 36
time-weighted, 42
when position is rebalanced periodically,

39
yearly, 38

.returns (function), 34
returns (function), 33
REXP, 33
REXPREXP (dataset), 83

scale1 (function), 83
Sweave, 38

tapply, 21
textutils (R package), 9
time-weighted exposure, 77
time-weighted returns, 42
timezones, 91, 95
toLatex (function)

summary.NAV method, 75
toOrg (function), 28
trading hours, 92
tsdb (R package), 10
tz database, 91

uniroot (function), 88

xts (R package), 35

zoo (R package), 35

114

	Introduction
	About PMwR
	Principles
	Small
	Flexible and general
	Functional
	Matching by name
	Vectorisation

	Other packages
	datetimeutils
	textutils
	tsdb

	Setting up R

	Keeping track of transactions: journals
	Overview
	Creating and combining journals
	Selecting transactions
	Computing balances
	position
	Algorithms for computing balances

	Aggregating journal information

	Computing profit and loss
	Simple cases
	Total P/L
	P/L over time

	More-complicated cases

	Computing returns
	Simple returns
	Holding-period returns
	Returns when weights are fixed
	Return contribution
	Returns when there are external cashflows

	Backtesting
	Decisions
	Data structure
	Function arguments
	Available information within functions
	Function arguments

	Examples: A single asset
	A useless first example
	More-useful examples

	Examples: Several assets
	A simple example

	Common tasks
	Remembering an entry price
	Delaying signals
	Specifying when to compute a signal and trade
	Writing a log
	Selecting parameters: calling btest recursively

	Rebalancing a portfolio
	Usage with unnamed vectors
	Usage with named vectors
	Optimisation
	Substituting a basket by its components

	Summarising portfolio time-series
	Creating NAVseries
	Methods

	Analysing trades
	Exposure
	Splitting and rescaling

	Scaling series
	Examples
	Scaling a series

	Plotting irregularly-spaced series during trading hours
	An example
	More examples
	Value of plot_trading_hours
	Adding grid lines

	Other Tools
	Dividend adjustments
	Stocks splits
	Treasuries quotes
	Validating ISINs
	Price tables
	Trees

	FAQ/FRC(Frequently-required computations)
	Appendix: Classes and data structures
	Appendix: Notes for developers
	Methods for returns

	Appendix: R and package versions used

