
Asset selection with Local Search
Enrico Schumann
es@enricoschumann.net

1 Introduction
We provide a code example for a simple asset-selection model; please see Gilli et al. [2011, ch. 12 and 13]
for more details. The code example here differs slightly from the book’s presentation. To see the latter,
check the script exampleLS.R (after attaching the package):

> showExample("exampleLS", chapter = "Portfolio")

We start by attaching the package and fixing a seed.

> require("NMOF")

> set.seed(112233)

2 The model
We wish to select between Kmin and Kmax out of nA assets such that an equally-weighted portfolio of these
assets has the lowest-possible variance. The formal model is:

min
w

w′Σw (1)

subject to the constraints

w j = 1/K for j ∈ J ,
Kmin ≤ K ≤ Kmax .

The weights are stored in the vector w; the symbol J stands for the set of assets in the portfolio; and
K = #{J} is the cardinality of this set, ie, the number of assets in the portfolio.

3 Setting up the algorithm
We simulate 500 assets: each gets a random volatility between 20% and 40%, and all pairwise correlations
are set to 0.6.

> na <- 500L ## number of assets

> C <- array(0.6, dim = c(na, na)) ## correlation matrix

> diag(C) <- 1

> minVol <- 0.20; maxVol <- 0.40 ## covariance matrix

> Vols <- (maxVol - minVol) * runif(na) + minVol

> Sigma <- outer(Vols, Vols) * C

The objective function.

> OF <- function(x, Data) {

w <- x/sum(x)

res <- crossprod(w[x], Data$Sigma[x, x])

tcrossprod(w[x], res)

}

. . . or even simpler:

1

> OF2 <- function(x, Data) {

w <- 1/sum(x)

sum(w * w * Data$Sigma[x, x])

}

The neighbourhood function.

> neighbour <- function(xc, Data) {

xn <- xc

p <- sample.int(Data$na, Data$nc, replace = FALSE)

xn[p] <- !xn[p]

reject infeasible solution

if (sum(xn) > Data$Kmax || sum(xn) < Data$Kmin)

xc

else

xn

}

We collect all necessary information in the list Data: the variance–corvariance matrix Sigma, the cardinality
limits Kmin and Kmax, the total number of assets na (ie, the cardinality of the asset universe), and the
parameter nc. This parameter controls the neighbourhood: it gives the number of assets that are to be
changed when a new solution is computed.

> Data <- list(Sigma = Sigma,

Kmin = 30L,

Kmax = 60L,

na = na,

nc = 1L)

4 Solving the model
As an initial solution we use a random portfolio.

> card0 <- sample(Data$Kmin:Data$Kmax, 1L, replace = FALSE)

> assets <- sample.int(na, card0, replace = FALSE)

> x0 <- logical(na)

> x0[assets] <- TRUE

With this implementation we assume that Data$Kmax > Data$Kmin. (If Data$Kmax equals Data$Kmin,
then sample returns a draw from 1:Data$Kmin.)

We collect all settings for the algorithm in a list algo.

> algo <- list(x0 = x0,

neighbour = neighbour,

nS = 5000L,

printDetail = FALSE,

printBar = FALSE)

It remains to run the algorithm.

> system.time(sol1 <- LSopt(OF, algo, Data))

user system elapsed

0.118 0.000 0.118

> sqrt(sol1$OFvalue)

[,1]

[1,] 0.16282

2

> par(ylog = TRUE, bty = "n", las = 1, tck = 0.01, mar = c(4,4,1,1))

> plot(sqrt(sol1$Fmat[,2L]), main = "",

type = "l", ylab = "portfolio volatility", xlab = "iterations")

0 1000 2000 3000 4000 5000

0.16

0.18

0.20

0.22

iterations

po
rt

fo
lio

 v
ol

at
ili

ty

(Recall that the simulated data had volatilities between 20 and 40%.)
We can also run the search repeatedly with the same starting value.

> nRuns <- 3L

> allRes <- restartOpt(LSopt, n = nRuns, OF, algo = algo, Data = Data)

> allResOF <- numeric(nRuns)

> for (i in seq_len(nRuns))

allResOF[i] <- sqrt(allRes[[i]]$OFvalue)

> par(bty = "n", las = 1, tck = 0.01, mar = c(4,4,1,1))

> plot(ecdf(allResOF), xlab = "x: Portfolio volatility", pch = 21,

main = "")

0.1625 0.1630 0.1635 0.1640

0.0

0.2

0.4

0.6

0.8

1.0

x: Portfolio volatility

F
n(

x)

(We run LSopt only 3 times to keep the build time for the vignette acceptable. To get more meaningful
results you should increase nRuns.)

References
Manfred Gilli, Dietmar Maringer, and Enrico Schumann. Numerical Methods and Optimization in Finance.

Elsevier/Academic Press, 2011. URL http://enricoschumann.net/NMOF.

3

http://enricoschumann.net/NMOF

	Introduction
	The model
	Setting up the algorithm
	Solving the model

