
Neighbourhood Functions for Local-Search Algorithms
Package version 0.1-0

Enrico Schumann
es@enricoschumann.net

The function neighbourfun constructs a neighbourhood function, i.e. a function that maps
a given solution into a randomly-chosen neighbour. This vignette provides several exam-
ples of how the function can be used. We start by attaching the package and setting a
seed.

> library("neighbours")

> set.seed(3477)

In the examples that follow, we will use a simple optimisation algorithm, a (stochastic)
Local Search. If package NMOF is available, function LSopt from that package is used. If
not, we use a simple replacement, taken from Gilli et al. [2019, Chapter 13].

> LSopt <- if (requireNamespace("NMOF")) {

NMOF::LSopt

} else

function(OF, algo = list(), ...) {

xc <- algo$x0

xcF <- OF(xc, ...)

for (s in seq_len(algo$nI)) {

xn <- algo$neighbour(xc, ...)

xnF <- OF(xn, ...)

if (xnF <= xcF) {

xc <- xn

xcF <- xnF

}

}

list(xbest = xc, OFvalue = xcF)

}

Example: Selecting elements of a list

We are given a numeric vector y and also a matrix X , which has as many rows as y has
elements. The aim now is to find a subset of columns of X whose average is as lowly
correlated with y as possible. Let us create random data.

> ny <- 50 ## length of y, number of rows of X

> nx <- 500 ## number of columns of X

> y <- runif(ny)

> X <- array(runif(ny * nx), dim = c(ny, nx))

We’ll try a (stochastic) Local Search to compute a solution. There may be other, perhaps
better heuristics for the job. But a Local Search will compute a good solution, as we will
see; and it is simple, which is a good idea for an example. See Gilli et al. [2019, Chapter 13]
for a tutorial on Local Search.
Suppose we want a solution to include between 10 and 20 columns. A valid candidate
solution would be the first 15 columns of X .

1

es@enricoschumann.net

> x0 <- logical(nx)

> x0[1:15] <- TRUE

> head(x0, 20)

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[10] TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE

[19] FALSE FALSE

It’s probably not a very good solution. We write an objective function to compute the
actual quality of the solution x0.

> column_cor <- function(x, X, y)

cor(rowMeans(X[, x]), y)

With this objective function we can evaluate the quality of x0.

> column_cor(x0, X, y)

[1] -0.0621

To run a Local Search, we need a neighbourhood function. Calling neighbourfunwill create
such a function, taking as inputs our constraints:† at least 10, no more than 20 columns. † Gentleman and Ihaka

[2000] show that R’s scop-
ing rules are particularly
convenient for creating
the ingredients of op-
timisation, such as the
objective function or, as
here, a neighbourhood
function.

> nb <- neighbourfun(type = "logical", kmin = 10, kmax = 20)

It remains to run the Local Search.

> sol.ls <- LSopt(column_cor,

list(neighbour = nb,

x0 = x0, ## initial solution

nI = 3000, ## number of iterations

printBar = FALSE),

X = X, y = y)

Local Search.

Initial solution: -0.0621

Finished.

Best solution overall: -0.824

Let us evaluate the final solution.

> column_cor(sol.ls$xbest, X, y)

[1] -0.824

And we check the constraints: how many columns are in the solution?

> sum(sol.ls$xbest)

[1] 20

We can visualise the initial and the final solution. The negative correlation is clearly visible.

> par(mfrow = c(1, 2), las = 1, bty = "n",

mar = c(3, 3, 1, 0.5), mgp = c(1.75, 0.25, 0),

tck = 0.02, cex = 0.7)

> plot(y, rowMeans(X[, x0]),

main = "Initial solution",

pch = 19, cex = 0.5,

2

ylim = c(0.3, 0.7),

xlab = "y",

ylab = "Mean of linear combination of columns")

> par(yaxt = "n")

> plot(y, rowMeans(X[, sol.ls$xbest]),

main = "Result of Local Search",

pch = 19, cex = 0.5,

ylim = c(0.3, 0.7),

xlab = "y")

> axis(4)

0.0 0.2 0.4 0.6 0.8 1.0

0.3

0.4

0.5

0.6

0.7
Initial solution

y

M
ea

n
of

 li
ne

ar
 c

om
bi

na
tio

n
of

 c
ol

um
ns

0.0 0.2 0.4 0.6 0.8 1.0

Result of Local Search

y

ro
w

M
ea

ns
(X

[,
so

l.l
s$

xb
es

t])

More restrictions

The neighbourhood function we used in the previous section included constraints: it
would include no fewer than 10 or no more than 20 TRUE values. Note that the neighbour-
hood function required a valid x as input.† We may also set kmin and kmax to the same † For invalid x, the result

is undefined. Neighbour-
hood functions should not
check the validity of their
inputs, because of speed:
the functions are called
thousands of times dur-
ing an optimisation run,
and so every fraction of a
second matters.

integer, so the number of TRUE values is fixed. (In this case, a slightly-different algorithm
will be used.)
We can also add a constraint about elements not to touch. Suppose the initial solution to
a model (not the example we use previously) is a logical vector of length 9.

> x <- logical(9L)

> x[4:6] <- TRUE

> compare_vectors(x)

000111000

We restrict the changes that can be made to the solution: the first three elements must
not be touched; only the remaining elements may change, i.e. are active.

> active <- c(rep(FALSE, 3),

rep(TRUE, length(x) - 3))

> active

[1] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE

> nb <- neighbourfun(type = "logical", kmin = 3, kmax = 3, active = active)

3

Let us take a few random steps: the function will never touch the first three elements.

000111000

| |

000110001

| |

000100101

| |

000001101

| |

000011001

| |

000011100

||

000101100

||

000110100

||

000111000

| |

000110001

||

000101001

Another example: minimising portfolio risk

Suppose we are given a matrix R and aim to find a vector x such that the variance of the
elements in the product Rx is minimised. This is a common problem in finance, in which
R could be a matrix of asset-price returns, with each column holding the returns of one
asset, and x a vector of portfolio weights.
We’ll solve this problem, as in the previous example, with Local Search. The solution now
is a numeric vector x . Again we need two functions – the objective function and the
neighbourhood function – to find the optimal (or at least a good) vector.
Start with the objective function. For this particular goal – the variance of returns –, we
can first compute the variance–covariance matrix Σ of R, and then minimise x ′Σx . That
is, we could write an objective function as follows:

> variance <- function(x, S, ...)

x %*% S %*% x

(In the code, S stands for the variance–covariance matrix Σ.)
An alternative way to write the objective function is the following.

> variance2 <- function(x, R, ...)

var(R %*% x)

The disadvantage of the second version is efficiency: R might have many rows, and then
computing the product Rx in every iteration would be more expensive than using S, which
essentially is the crossproduct of R. But as we shall see below, this inefficiency can be
remedied.
Suppose we start with an equal-weight portfolio.

4

> if (!requireNamespace("NMOF")) {

R <- array(rnorm(120*20, sd = 0.03), dim = c(120, 20))

} else

R <- NMOF::randomReturns(na = 20, 120, 0.03, rho = 0.6)

> S <- cov(R) ## Sigma

> x0 <- rep(1/ncol(R), ncol(R))

When the argument type is set to numeric, the resulting neighbourhood function will ran-
domly select elements and change them slightly by adding or subtracting real numbers.
The size of those numbers is controlled by argument stepsize, and with argument random
set to TRUE (the default), the step sizes will vary randomly. When argument sum is TRUE, the
function will add and subtract from chosen elements in such a way that the sum over all
elements remains unchanged. (That is a typical restriction in portfolio-selection models.)

> nb <- neighbourfun(type = "numeric",

min = 0, max = 0.2,

stepsize = 0.005)

We can solve this problem with Local Search with the first version of the objective func-
tion.

> sol.ls <- LSopt(variance,

list(x0 = x0,

neighbour = nb,

nI = 2000,

printBar = FALSE),

S = S)

Local Search.

Initial solution: 0.000651

Finished.

Best solution overall: 0.000561

> sol.qp <- if (requireNamespace("NMOF"))

round(NMOF::minvar(S, wmin = 0, wmax = 0.2), 2) else NA

> data.frame(LS = round(sol.ls$xbest, 2)[1:10],

QP = sol.qp[1:10])

LS QP

1 0.00 0.00

2 0.00 0.00

3 0.00 0.00

4 0.12 0.12

5 0.20 0.20

6 0.02 0.02

7 0.00 0.00

8 0.11 0.11

9 0.04 0.04

10 0.00 0.00

When we feed the second version of the objective function to LSopt, we arrive at the same
solution.

> sol.ls2 <- LSopt(variance2,

list(x0 = x0,

neighbour = nb,

5

nI = 2000,

printBar = FALSE),

R = R)

Local Search.

Initial solution: 0.000651

Finished.

Best solution overall: 0.000561

> data.frame(LS2 = round(sol.ls2$xbest, 2)[1:10],

QP = sol.qp[1:10])

LS2 QP

1 0.00 0.00

2 0.00 0.00

3 0.00 0.00

4 0.12 0.12

5 0.20 0.20

6 0.02 0.02

7 0.00 0.00

8 0.11 0.11

9 0.04 0.04

10 0.00 0.00

This second objective function is, as described above, less efficient than the first. But
it is much more flexible: only for minimising variance could we take the shortcut via
the variance–covariance matrix. But for other measures of risk, we cannot do that. One
example is the so-called semi-variance, defined as

1
m

m∑
i=1

min(Rix − 1
m
ι′(Rx), 0)2 (1)

All we have to do now is to exchange objective functions, and Local Search will find the
corresponding portfolio.

> semivariance <- function(x, R, ...) {

Rx <- R %*% x

Rx.lower <- pmin(Rx - mean(Rx), 0)

sum(Rx.lower)

}

Updating

In the example in the previous section, but also in many other cases when doing data
analysis, the solution x is used to compute a matrix/vector product Ax , in which A is a m
times n matrix, and x is of length n.
If we change only few elements in the solution, then we do not need to compute Ax in
every iteration. Instead, we can update the product and save computing time (the longer
x is, the more time we can save).
Let xc denote the current solution and xn the neighbour solution, produced by adding
element-wise the vector x∆ to xc. If only few elements change, then x∆ will be relatively
sparse, i.e. many of its elements are zero.

xn = xc + x∆ .

6

Then we have:
Axn = A(xc + x∆) = Axc︸ ︷︷ ︸

known

+Ax∆ .

So we only need to compute Ax∆ in every iteration, in which many columns of A are
ignored because the corresponding elements of x∆ are zero.
Let us solve the risk-minimisation model one more time. First, we add the initial product
Ax as an attribute to the solution.

> attr(x0, "Ax") <- R %*% x0

The objective function now has less work to do: it does not compute Ax , but only its
variance.

> variance3 <- function(x, ...)

var(attr(x, "Ax"))

The final ingredient is the neighbourhood function.

> nb_upd <- neighbourfun(type = "numeric",

min = 0, max = 0.2,

stepsize = 0.005,

update = "Ax", A = R)

It remains to call LSopt.

> sol.ls3 <- LSopt(variance3,

list(x0 = x0,

neighbour = nb_upd,

nI = 2000,

printBar = FALSE))

Local Search.

Initial solution: 0.000651

Finished.

Best solution overall: 0.000561

> data.frame(LS = round(sol.ls$xbest, 2)[1:10],

LS2 = round(sol.ls2$xbest, 2)[1:10],

LS3 = round(sol.ls3$xbest, 2)[1:10],

QP = sol.qp[1:10])

LS LS2 LS3 QP

1 0.00 0.00 0.00 0.00

2 0.00 0.00 0.00 0.00

3 0.00 0.00 0.00 0.00

4 0.12 0.12 0.12 0.12

5 0.20 0.20 0.20 0.20

6 0.02 0.02 0.02 0.02

7 0.00 0.00 0.00 0.00

8 0.11 0.11 0.11 0.11

9 0.04 0.04 0.04 0.04

10 0.00 0.00 0.00 0.00

The solution remains the same, but in particular for large matrices A, the optimisation
can become much faster.

7

References

Robert Gentleman and Ross Ihaka. Lexical scope and statistical computing. Journal of
Computational and Graphical Statistics, 9(3):491–508, 2000.

Manfred Gilli, Dietmar Maringer, and Enrico Schumann. Numerical Methods and Op-
timization in Finance. Elsevier/Academic Press, 2nd edition, 2019. URL http://

enricoschumann.net/NMOF.

8

http://enricoschumann.net/NMOF
http://enricoschumann.net/NMOF

