
tsdb: A terribly-simple data base for
time series

Enrico Schumann

February 6, 2017

1 About tsdb

A terribly-simple data base for time series. All series are saved as csv files. The
package offers utilities for saving files in a standardised format, and for retrieving
and joining data.

1.1 Good things about tsdb

• no setup needed, no system dependencies (i.e. external software, such as a
database)

• completely portable; moving from one computer to another requires no effort
(the only file to take care of is file encoding)

• data usable by other software

1.2 When you need another database

• tsdb is potentially slow

• no multi-user support; no access-rights management (other than that pro-
vided by the OS)

• no network protocols

2 Using tsdb

2.1 Writing data

We first load the package.

library("tsdb")

1

Start by creating time-series data.

library("zoo")

z <- zoo(1:5, as.Date("2016-1-1")+0:4)

z

2016-01-01 2016-01-02 2016-01-03 2016-01-04 2016-01-05

1 2 3 4 5

To store these data, we need to enforce a certain format, which the functions ts_table
and as.ts_table do.

ts <- as.ts_table(z, columns = "A")

ts

5 rows [2016-01-01 -> 2016-01-05]: A

Note that we had to provide a column name (A) for the data. That is not optional. It
is one of the things that ts_table enforces. Another is that timestamps need to be
of class Date or POSIXct.

To store the data to a file, use write_ts_table. The function will take a directory
and file name as arguments, which mimics the hierarchy of databases and tables in
a classical database.

write_ts_table(ts, dir = "~/tsdb/daily", file = "example1")

The written file will look like this:

"timestamp","A"

16801,1

16802,2

16803,3

16804,4

16805,5

You may notice that the dates been replaced by numbers. The mapping between
these numbers and calendar times is described later, when we discuss the represen-
tation of timestamps.

Let us write a second file. This time, we use ts_table directly.

x <- array (1:20, dim = c(10 ,2))

colnames(x) <- c("A", "B")

x

2

A B

[1,] 1 11

[2,] 2 12

[3,] 3 13

[4,] 4 14

[5,] 5 15

[6,] 6 16

[7,] 7 17

[8,] 8 18

[9,] 9 19

[10,] 10 20

ts_table(x, timestamp = as.Date("2016-1-1")+0:9)

10 rows [2016-01-01 -> 2016-01-10]: A, B

We can also explicitly specify the column names, which will override the column
names of the data. In fact, this is the preferred way, since it makes things more
explicit (which usually means safer).

ts <- ts_table(x, timestamp = as.Date("2016-1-1")+0:9,

columns = c("B", "A"))

ts

10 rows [2016-01-01 -> 2016-01-10]: B, A

We write the data to a file example2.

write_ts_table(ts, dir = "~/tsdb/daily", file = "example2")

The written file looks like this:

"timestamp","B","A"

16801,1,11

16802,2,12

16803,3,13

16804,4,14

16805,5,15

16806,6,16

16807,7,17

16808,8,18

16809,9,19

16810,10,20

3

2.2 Reading data

Use the function read_ts_tables.

read_ts_tables("example1", dir = "~/tsdb/daily", columns = "A")

The default return value is a list with components data, timestamp, columns and
file.path.

$data

[,1]

[1,] 1

[2,] 4

[3,] 5

$timestamp

[1] "2016-01-01" "2016-01-04" "2016-01-05"

$columns

[1] "A"

$file.path

[1] "~/tsdb/daily/example1::A"

More convenient may be to specify a return.class.

read_ts_tables("example1", dir = "~/tsdb/daily", columns = "A",

return.class = "zoo")

~/tsdb/daily/example1::A

2016-01-01 1

2016-01-04 4

2016-01-05 5

read_ts_tables("example1", dir = "~/tsdb/daily", columns = "A",

return.class = "data.frame")

timestamp ~/tsdb/daily/example1::A

1 2016-01-01 1

2 2016-01-04 4

3 2016-01-05 5

But wait. We provided and wrote to the file values for 1 January to 5 January. But
we only got values for 1, 4 and 5 January. The reason is that tsdb was written with
financial data in mind, and on weekends there are no prices.

weekdays(as.Date("2016-1-1")+0:4)

4

[1] "Friday" "Saturday" "Sunday" "Monday" "Tuesday"

To obtain data for weekends as well, specify the argument drop.weekends.

read_ts_tables("example1", dir = "~/tsdb/daily",

columns = "A",

return.class = "data.frame",

drop.weekends = FALSE)

timestamp ~/tsdb/daily/example1::A

1 2016-01-01 1

2 2016-01-02 2

3 2016-01-03 3

4 2016-01-04 4

5 2016-01-05 5

You may have noticed a small difference in the names of the functions for reading
and writing. We always write a single table, but we read tables.

read_ts_tables(c("example1", "example2"),

dir = "~/tsdb/daily",

columns = "A",

return.class = "data.frame",

drop.weekends = FALSE)

timestamp ~/tsdb/daily/example1::A ~/tsdb/daily/example2::A

1 2016-01-01 1 11

2 2016-01-02 2 12

3 2016-01-03 3 13

4 2016-01-04 4 14

5 2016-01-05 5 15

6 2016-01-06 NA 16

7 2016-01-07 NA 17

8 2016-01-08 NA 18

9 2016-01-09 NA 19

10 2016-01-10 NA 20

The column names of the returned object consist of the filepaths and the column,
which may be more information than we actually want. The argument column.name
specifies the format; its default is %dir%/%file%::%column%.

read_ts_tables(c("example1", "example2"),

dir = "~/tsdb/daily",

columns = "A",

return.class = "data.frame",

drop.weekends = FALSE ,

column.name = "%file%/%column%")

5

timestamp example1/A example2/A

1 2016-01-01 1 11

2 2016-01-02 2 12

3 2016-01-03 3 13

4 2016-01-04 4 14

5 2016-01-05 5 15

6 2016-01-06 NA 16

7 2016-01-07 NA 17

8 2016-01-08 NA 18

9 2016-01-09 NA 19

10 2016-01-10 NA 20

Missing values are by default set to NA. That happens even for missing columns, with
a warning, though.

read_ts_tables(c("example1", "example2"),

dir = "~/tsdb/daily",

columns = c("A", "B"),

return.class = "data.frame",

drop.weekends = FALSE ,

column.name = "%file%/%column%")

timestamp example1/A example1/B example2/A example2/B

1 2016-01-01 1 NA 11 1

2 2016-01-02 2 NA 12 2

3 2016-01-03 3 NA 13 3

4 2016-01-04 4 NA 14 4

5 2016-01-05 5 NA 15 5

6 2016-01-06 NA NA 16 6

7 2016-01-07 NA NA 17 7

8 2016-01-08 NA NA 18 8

9 2016-01-09 NA NA 19 9

10 2016-01-10 NA NA 20 10

Warning message:

In read_ts_tables(c("example1", "example2"), dir = "~/tsdb/daily", :

columns missing

3 How tsdb works

3.1 The file format

tsdb can store and load time-series data. The format it uses is plain csv; a sample
file my look as follows:

"timestamp","close"

17131,11

6

17132,12

17133,13

17134,14

17135,15

Thus, the file has a header line that gives the names of the columns, with the first
column always being named timestamp.

The advantage of this plain format is that the data are in no way dependent on tsdb.
The files can be used and manipulated by other software as well. For instance, if the
above example is is stored in an appropriately named file example, we would reverse
the order of the timestamps in a shell such as bash.

head -1 example; tail -n +2 example | sort -r

"timestamp","close"

17135,15

17134,14

17133,13

17132,12

17131,11

3.2 Timestamps

7

	About tsdb
	Good things about tsdb
	When you need another database

	Using tsdb
	Writing data
	Reading data

	How tsdb works
	The file format
	Timestamps

