Heuristics in Finance

E. Schumann

VIP Value Investment Professionals AG, Wilen (SZ)

6th R/Rmetrics Meielisalp Workshop &
Summer School on Computational Finance and Financial Engineering
Meielisalp, 24–28 June 2012
Outline
- Heuristics
- Single-solution methods: Local Search/Threshold Accepting

Principles
- The application matters most. \((\text{Principle } 3)\)
- Go experiment. \((\text{Principle } 5)\)

 \[
 \text{how do you know how to . . . ?} \quad \rightarrow \quad \text{how do you decide how to . . . ?}
 \]

Problems → models
given: a question
- how to allocate wealth?
- how to price a security?
- . . .

modelling: objective function \(f(\cdot)\) **and constraints**
- financial considerations (how to measure risk/reward?)
- empirical considerations (estimate/forecast/approximate/simulate. . .)
- computational considerations
Heuristics
- used in many fields: mathematics, psychology/judgement and decision making, computer science/artificial intelligence, ...
- associated with optimisation, rules of thumb, search
- optimality cannot be proved
→ used in the sense of numerical optimisation technique

Heuristics
- 'good' stochastic approximation of optimum ('good': solution quality/computing time)
- robust to changes to the given problem and to changes in the parameter settings of the heuristic (changes in] solution quality/computing time)
- easy and simple
- not subjective

Heuristics
given: optimisation problem \(\min f(x) \); some solution \(x \)
'rule':
- simple
- change \(x \) → on average improve \(f(x) \)
→ apply rule many times over (thus computationally intensive) so that on average/in the long run the solution is improved

guidelines for rule (Schumann and Ardia, 2011)
- don't be greedy
- trust your luck

Details matter
- 'in principle' v practical implementation (many decisions)
- add representation: matters for speed, but also gives flexibility
- implementation matters
Heuristics: generic iterative methods

1: generate initial solution \(x^c \)
2: evaluate \(f(x^c) \)
3: while stopping condition not met do
4: create new solution \(x^n \in N(x^c) \)
5: evaluate \(f(x^n) \)
6: if \(A(x^n, \ldots) \) then \(x^c = x^n \)
7: end while
8: return \(x^c \)

\(x \) a solution
\(f \) objective function (goal function, fitness function, \ldots)
\(N \) neighbourhood
\(A \) acceptance (or selection)

stopping rule

Implementation

- solutions are handled through user-defined functions (\(f, N, A \)); can be implemented without side-effects
- solution \(x \) can be any data structure (not only a numeric vector)
- when to stop? → trade-off resources/quality
 - check available tools
 - experiment
 - profiler (not compiler)

Heuristics: multiple solutions

1: generate initial solutions \(X^c \)
2: evaluate \(f(X^c) \)
3: while stopping condition not met do
4: create new solutions \(X^n \in N(X^c) \)
5: evaluate \(f(X^n) \)
6: if \(A(X^n, \ldots) \) then \(X^c = X^n \)
7: end while
8: return \(X^c \)

\(X \) a solution
\(f \) objective function (goal function, fitness function, \ldots)
\(N \) neighbourhood
\(A \) acceptance (or selection)

stopping rule
Heuristics

good:
 all heuristics are based on just a few principles

bad:
 all heuristics are based on just a few principles

good:
 ◦ precisely-described algorithms exist ('canonical versions')
 ◦ algorithms robust for different settings
 ◦ heal bad settings through more computing time
 ◦ judge for yourself: run experiments – and stop when satisfied

Subset sum problem

◦ given: a list \(X \) of numbers
◦ aim: find subset \(x \in X \) such that \(\sum x \) is close to \(s_0 \)

was discussed here

Subset sum problem

```r
> set.seed(8232)
> X <- runif(100)
> ## Find subset that sums up close to 2.0 !
> i <- sort(c(84,54,11,53,88,12,26,45,25,62,96,23,78,77,66,1))
> sum(X[i])
[1] 2.0005

> ## --> should be 2.000451

> xHWB <- logical(100L)
> i <- c(84,54,11,53,88,12,26,45,25,62,96,23,78,77,66,1)
> xHWB[i] <- TRUE
> sum(X[xHWB])
[1] 2.0005
```
Subset sum problem

find subset of \(X \) whose sum is 2

\begin{verbatim}
> set.seed(298007324)
> n <- 100L
> X <- runif(n)

create known solution \(x_{TRUE} \)

\begin{verbatim}
> sort(which(xTRUE))
[1] 1 3 9 12 14 18 20 24 25 29 31 35 41 42 48 52 60 70 86

> sum(X[xTRUE]) ## should be 2
[1] 2
\end{verbatim}
\end{verbatim}

E. Schumann

Subset sum problem

- representing a solution
- evaluate a solution: objective function
- modify a solution: neighbourhood function
- accept/reject a solution

E. Schumann

Representing a solution

element of \(X \) either in subset or not: logical vector

\begin{verbatim}
TRUE FALSE FALSE FALSE FALSE
\end{verbatim}

no magic numbers \(\rightarrow \) collecting all data in Data

\begin{verbatim}
> Data <- list(X = X,
> n = 100L,
> s0 = 2)
\end{verbatim}

E. Schumann
Evaluating a solution

map a solution into a real number

```r
> OF <- function(x, X)
    abs(sum(X[x]) - 2)
> OF(xTRUE, X)
  [1] 0
```

with Data

```r
> OF <- function(x, Data)
    abs(sum(Data$X[x]) - Data$s0)
> OF(xTRUE, Data)
  [1] 0
```

```r
> sum(numeric(0L))
  [1] 0
```

```r
> x <- logical(Data$n)
> x[1:5]
  [1] FALSE FALSE FALSE FALSE FALSE
```

```r
> OF(x, Data)
  [1] 2
```
Random solutions

```r
> makeRandomSol <- function(Data) {
    x <- logical(Data$n)
    k <- sample(Data$n, size = 1L)  ## random cardinality
    x[sample(Data$n, size = k)] <- TRUE
    x
}

> OF(makeRandomSol(Data), Data)
[1] 40.644

> OF(makeRandomSol(Data), Data)
```

E. Schumann

Random solutions

create 100000 of random solutions → keep 100 best solutions
(or use best-of strategy)

E. Schumann
Iterative improvement

TRUE FALSE FALSE FALSE FALSE
→ change it slightly
TRUE FALSE TRUE FALSE FALSE
→ be greedy: check all neighbours
→ pick one element randomly and switch it

> Data$size <- 1L
> neighbour <- function(x, Data) {
 p <- sample.int(Data$n, size = Data$size)
 x[p] <- !x[p]
 x
}

But why would that work?

Iterative improvement

create a random solution, create neighbours that differ by
- 1 element
- 3 elements
- 5 elements

Iterative improvement

larger steps, larger changes in OF
Iterative improvement

- Quality of solutions is correlated.

![Graphs showing iterative improvement](image)

- Create meaningful variation, but keep quality (OF) correlated.
- The application determines meaningful.

Greedy search

1. **while** stopping condition not met **do**
2. create new solution \(x^n \in N(x^c) \)
3. evaluate \(f(x^n) \)
4. if \(A(x^n, \ldots) \) then \(x^c = x^n \)
5. **end while**

N compute and evaluate all neighbours; return best neighbour

A if best neighbour is better, accept it

Stop when there is no further improvement

→ depends on starting value
Local Search

1: while stopping condition not met do
2: create new solution $x^n \in N(x^c)$
3: evaluate $f(x^n)$
4: if $A(x^n,...)$ then $x^c = x^n$
5: end while

- N: pick one neighbour randomly
- A: if neighbour is not worse, accept it
- stop after a fixed number of iterations

```
LSopt(OF, algo = list(), ...)
```

Local Search

```
> algo <- list(x0 = makeRandomSol(Data), ## initial solution
               neighbour = neighbour,
               nS = 20000, ## number of steps
               printBar = FALSE)

> system.time(solLS <- LSopt(OF, algo = algo, Data = Data))
```

Local Search.
Initial solution: 16.53
Finished.
Best solution overall: 0.0013902
 user system elapsed
 0.45 0.00 0.45
Threshold Accepting

1: while stopping condition not met do
2: create new solution \(x^n \in N(x^c) \)
3: evaluate \(f(x^n) \)
4: if \(A(x^n, ...) \) then \(x^c = x^n \)
5: end while

\(N \) pick one neighbour randomly
\(A \) if neighbour is not much worse, accept it
stop after a fixed number of iterations

not much worse: increase in objective function less than a threshold
→ typically, a threshold sequence \(\{t_1, \ldots \} \) is used

```
Threshold Accepting

TAopt(OF, algo = list(), ...)

> algo <- list(x0 = makeRandomSol(Data), ## initial solution
  neighbour = neighbour,
  nS = 1000, ## total iterations:
  nT = 20, ## nS * nT
  printBar = FALSE)

Threshold Accepting

Computing thresholds ... OK.
Estimated remaining running time: 0.4 secs.

Running Threshold Accepting...
Initial solution: 35.574
Finished.
Best solution overall: 0.000080937
```

user system elapsed
0.64 0.00 0.64
Experiments
Local Search and Threshold Accepting are stochastic result of optimisation: random variable ϕ with unknown distribution D

(assumption: change seed for each run)

easy to sample from D:
run restarts $i = 1, \ldots, n_{\text{restarts}}$ → collect ϕ_i

Experiments

```r
restartOpt(fun, n, OF, algo, ..., 
    method = c("loop", "multicore", "snow"), 
    mc.control = list(), cl = NULL)
```

> restartOpt(LSopt, n = 100, OF, algo = algo, Data = Data)
> restartOpt(TAopt, n = 100, OF, algo = algo, Data = Data)
Implementation details

representation

- objective function: \(\text{fun}(x) \rightarrow \text{number} \)
- neighbourhood function: \(N(x) \rightarrow x.\text{new} \)

Implementation details

solution

- logical vector
- subset sum associated with this vector

\[
\begin{align*}
\text{iteration 1} & \quad \sum x_{\text{subset1}} \\
\text{iteration 2} & \quad \sum x_{\text{subset1}} + \sum (X_{I_p})
\end{align*}
\]

\[
l_p = \begin{cases}
0 & \text{if not included} \\
1 & \text{if added} \\
-1 & \text{if removed}
\end{cases}
\]

Subset sum with updating

```r
> tmp <- makeRandomSol(Data)
> x0 <- list(x = tmp,
\texttt{sx} = \text{sum(Data}\$X[tmp]))
> OF2 <- function(x, Data)
\texttt{abs(x$sx - 2)}
> OF2(x0, Data)
\[1\] 0.64818
> OF(tmp, Data) ## check
\[1\] 0.64818
```
Subset sum with updating

```r
neighbour2 <- function(x, Data) {
  p <- sample.int(Data$n, size = Data$size)
  x$x[p] <- !x$x[p]
  x$sx <- x$sx + sum(Data$X[p] * ifelse(x$x[p], 1, -1))
  x
}
```

new data

```r
Data$n <- 50000L
Data$X <- rnorm(Data$n)
```

Subset sum with updating

```r
set.seed(56447)
x0 <- makeRandomSol(Data)
algo <- list(x0 = x0,
              printDetail = FALSE, printBar = FALSE,
              neighbour = neighbour)
t1 <- system.time(sol1 <- TAopt(OF, algo = algo, Data = Data))
```

```r
set.seed(56447)
tmp <- makeRandomSol(Data)
x0 <- list(x = tmp, sx = sum(Data$X[tmp]))
algo <- list(x0 = x0,
              printDetail = FALSE, printBar = FALSE,
              neighbour = neighbour2)
t2 <- system.time(sol2 <- TAopt(OF2, algo = algo, Data = Data))
```
Subset sum with updating

compare solutions...

```r
> OF(sol1$xbest, Data)
[1] 0.000059376
```

```r
> OF2(sol2$xbest, Data)
[1] 0.000059376
```

...and speedup

```r
t1[[3L]]/t2[[3L]]
[1] 12
```

Details

- How to choose the thresholds?
- when to stop?
- constraints?

Constraints

- throw away infeasible solutions
- always construct feasible solutions (example: budget constraint)
- repair solutions
- penalise infeasible solutions

Portfolio optimisation

\[
\begin{align*}
\min_w & \Phi \\
\text{s.t.} & w'1 = 1, \\
& 0 \leq w_j \leq w_j^{max} \quad \text{for } j = 1, 2, \ldots, n_A
\end{align*}
\]

- \(w\) weight vector
- \(w_j^{max}\) maximum weight 5%
- \(\Phi\) squared portfolio return
Squared return and variance is similar:

\[\frac{1}{n_S} R'R = \text{Cov}(R) + mm' \]

with \(m \) the vector of column means of \(R \)

Portfolio optimisation

mean–variance

weights + returns \(\rightarrow \) portfolio return

weights + covariance matrix \(\rightarrow \) portfolio variance

scenario optimisation

scenario matrix \(R \) (rows: scenarios, columns: assets)

weights + scenarios \(\rightarrow \) portfolio returns \(\rightarrow \) any portfolio statistic

Setting up the model

portfolio weights: numeric vector \(w \)

objective function: \(f(Rw) \)

neighbourhood: pick two assets; increase one weight, decrease one weight

1. set \(\epsilon \)
2. randomly select asset \(i \)
3. set \(w_i = w_i - \epsilon \)
4. randomly select asset \(i \)
5. set \(w_i = w_i + \epsilon \)

\(\rightarrow \) enforces budget constraint (and possibly \(w_{\text{min}}/w_{\text{max}} \))
Setting up the model

dataset fundData: 500 weekly return scenarios for 200 funds

> Data <- list(R = t(fundData),
 na = dim(fundData)[2L], ## number of assets
 ns = dim(fundData)[1L], ## number of scenarios
 eps = 0.5/100, ## stepsize
 wmin = 0.00,
 wmax = 0.05,
 resample = function(x, ...)
 x[sample.int(length(x), ...)])

Portfolio optimisation

objective function
 ◦ compute Rw
 ◦ evaluate f(Rw)

> OF <- function(w, Data) {
 Rw <- crossprod(Data$R, w)
 crossprod(Rw)
}

Portfolio optimisation

> neighbour <- function(w, Data) {
 toSell <- w > Data$wmin
 toBuy <- w < Data$wmax
 i <- Data$resample(which(toSell), size = 1L)
 j <- Data$resample(which(toBuy), size = 1L)
 eps <- runif(1L) * Data$eps
 eps <- min(w[i] - Data$wmin, Data$wmax - w[j], eps)
 w[i] <- w[i] - eps
 w[j] <- w[j] + eps
 w
}

E. Schumann
NMOF – 48

E. Schumann
NMOF – 49

E. Schumann
NMOF – 50

23
Portfolio optimisation

set up and run TAopt

```r
> w0 <- runif(Data$na); w0 <- w0/sum(w0) ## a random solution
> algo <- list(x0 = w0,
   neighbour = neighbour,
   nS = 2000L,
   nT = 10L,
   q = 0.10,
   printBar = FALSE)
```

Portfolio optimisation

```r
> res <- TAopt(OF,algo,Data)
```

Threshold Accepting.

Computing thresholds ... OK.
Estimated remaining running time: 2.8 secs.

Running Threshold Accepting...
Initial solution: 0.22391
Finished.
Best solution overall: 0.0056666

scale solution: divide by ns; take square root; multiply by 100

```
[1] 0.33665
```

Portfolio optimisation

check constraints

```r
> min(res$xbest) ## should not be smaller than Data$wmin
[1] 0

> max(res$xbest) ## should not be greater than Data$wmax
[1] 0.05

> sum(res$xbest) ## should be one
[1] 1
```
Portfolio optimisation

compare with quadprog

OF (scaled) QP: 0.33612
OF (scaled) TA: 0.33665

(scaled: divide by ns; take square root; multiply by 100)

Updating

\[w^n = w^c + w^\Delta \]
\[Rw^n = R(w^c + w^\Delta) = \underbrace{Rw^c}_{\text{known}} + Rw^\Delta \]

Updating with updating

> OFU <- function(sol, Data)
 crossprod(sol$Rw)
> neighbourU <- function(sol, Data){
 wn <- sol$w
 toSell <- wn > Data$wmin; toBuy <- wn < Data$wmax
 i <- Data$resample(which(toSell), size = 1L)
 j <- Data$resample(which(toBuy), size = 1L)
 eps <- runif(1) * Data$eps
 eps <- min(wn[i] - Data$wmin, Data$wmax - wn[j], eps)
 wn[i] <- wn[i] - eps; wn[j] <- wn[j] + eps
 Rw <- sol$Rw + Data$R[,c(i,j)] %*% c(-eps,eps)
 list(w = wn, Rw = Rw)
}
Updating

```r
> w0 <- runif(Data$na); w0 <- w0/sum(w0) ## a random solution
> Data$R <- fundData
> sol <- list(w = w0, Rw = Data$R %*% w0)
> algo <- list(x0 = sol,
               neighbour = neighbourU,
               nS = 2000L,
               nT = 10L,
               q = 0.10,
               printBar = FALSE,
               printDetail = FALSE)
> res <- TAopt(OFU, algo, Data)
```

Robustness

the weight of asset 200

```r
> wqp[200]
[1] 0.0000000000000001104
```

```r
> fundData <- cbind(fundData, fundData[, 200L])
> dim(fundData)
[1] 500 201
```

```r
> qr(fundData)$rank
[1] 200
```

```r
> qr(cov(fundData))$rank
[1] 200
```

Robustness

```r
> cat(try(result.QP <- solve.QP(Dmat = covMatrix,
                      dvec = rep(0, Data$na),
                      Amat = t(rbind(A,B)),
                      bvec = rbind(a,b),
                      meq = 1L)))
Error in solve.QP(Dmat = covMatrix, dvec = rep(0, Data$na), Amat = t(rbind(A, : matrix D in quadratic function is not positive definite!
```

26
Robustness

```r
> res2 <- TAopt(OFU, algo, Data)

[1] 0.33651
```

weights 200 and 201

```r
> res2$xbest$w[200:201]

[1] 0 0
```

Other objective functions

\[
\frac{1}{n_s} \sum_{r_i < \theta} (\theta - r_i)^2
\]

```r
> OF <- function(w, Data) {
# semi-variance
  Rw <- crossprod(Data$R, w) - Data$theta
  Rw <- Rw - abs(Rw)
  sum(Rw*Rw) / (4 * Data$ns)
}
```

```r
> OF <- function(w, Data) {
# Omega
  Rw <- crossprod(Data$R, w) - Data$theta
  -sum(Rw - abs(Rw)) / sum(Rw + abs(Rw))
}
```
Good enough?

(Gilli and Schumann, 2011; Gilli et al., 2011)

1: for $i = 10 : 50000$ do
2: sample 400 scenarios without replacement
3: compute optimal portfolio with QP
4: set $n_{\text{iterations}} = i$
5: compute portfolio with TA, compute in-sample difference between QP/TA
6: compute out-of-sample difference for QP and TA on remaining 100 scenarios
7: end for

objective function value of QP – objective function value of TA

E. Schumann

Good enough?

in-sample versus out-of-sample difference depending on the number of iterations

E. Schumman

NMOF – 64
Conclusion

◦ ‘in principle’ vs ‘details matter’: compare different methods by implementing them
◦ parameters (e.g., step size in neighbourhood) are determined by application
◦ required precision is determined by application

More information

the NMOF package is on CRAN/R-Forge

> install.packages("NMOF") ## CRAN
> install.packages("NMOF",
repos = "http://R-Forge.R-project.org")

> require("NMOF")
> showExamples("tria.R") ## load code examples from book

mailing list: NMOF-News
https://lists.r-forge.r-project.org/cgi-bin/mailman/listinfo/nmof-news
and also at gmane.comp.finance.nmof.announce

references

