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Emilio Fontela’s scientific approach was essentially

pragmatic; it avoided complex formalisations and

focused instead on how the research could con-

tribute to an understanding of the problem un-

der consideration. We are convinced that this es-

say is in line with the spirit of Emilio Fontela.
M.G.

1 Introduction

Being precise — being clear and unambiguous - is a de-
sirable property of many things: time schedules, cook-
ing recipes, directions given to a traveller, physical mea-
surements. Yet, precision alone is not enough. Time
schedules are worth little when the scheduled events do
not happen; travel directions are useless when they lead
to the wrong place. In other words, just because some-
thing is precise does not mean that it is correct.? (Even
everyday language makes this distinction: one cannot be
accurately, but only precisely wrong.)

In this essay, we will use the word precise in the meaning
of exact and often in the sense of numerically exact. We
will use the word accurate to indicate that something is
both correct and precise enough to be useful. It is the
distinction between the two words that we want to dis-
cuss. More concretely, we will discuss how researchers
and practitioners in finance often mistake precision for
accuracy.

To be sure, accuracy and precision are related, and
a certain degree of precision is necessary for be-

ing accurate. But there must be limits. Ask a run-
ner what the marathon distance is, and the an-
swer will be 42.195 km. But when you think about
it, that is a surprisingly precise answer. Why not
42.2km? That would be just 5 metres off, or 0.01 %
of the total distance. Curiously, few people seem
to consider this precision strange. But perhaps we
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3See Porter (2007) for more on the history of precision in the
sciences.

have asked the wrong question. Better would have
been: what distance does the average marathon par-
ticipant run? The answer: very likely more than

42.195 km. That is because in professional running, a
so-called ‘short course prevention factor’ is used. From
http://www.bcathletics.org/main/rr_iaaf.htm:

“To prevent a course from being found to
be short on future re-measurement, it is
recommended that a “short course preven-
tion factor” be built in when laying out the
course. For bicycle measurements this factor
should be 0.1 % which means that each km
on the course will have a “measured length”
of 1oorm.’

So, it is certainly part of marathon culture that the
marathon distance is 42.195 km. Just as it is part of
marathon reality that runners have to make a (slightly)
longer distance.

For the marathon runner, the difference between per-
ception and reality — between precision and accuracy —
entails little cost. But our thesis is this: the difference
between precision and accuracy should receive more at-
tention in finance and economics, because researchers,
investor, regulators and other participants in financial
markets routinely confuse precision with accuracy, mis-
taking the former for the latter. And such confusion

is costly. Investors may be fooled into overpaying for
small advantages, which cannot be replicated in future.
They may even fool themselves, for example by being
overly reliant on so-called quantitative risk management
or by believing that they can fine-tune the risk and re-
ward of their portfolios.

Researchers may give up many opportunities for bet-
ter research by insisting on precision. In fact, we think
that researchers have given up accuracy in favour of
precision, and that this is both unwarranted and un-
fortunate. Instead, because the accuracy of many finan-
cial models is low, researchers should give up precision.
Through an example, we will illustrate that nothing
substantive is lost when alternative, less-precise methods
are used. On the contrary, much is gained, since these
methods make essentially no assumptions about the
data or model and have no requirements when it comes
to model specification.

Our essay is not a survey.* Instead, we will concen-
trate on a single topic, investment management. Even

#Neither is anything we say really new; much of what we say has
been said before: just read Morgenstern (1963). Nevertheless, we feel
that it helps to repeat.
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more concretely, we will narrow down our discussion
on quantitative portfolio management. Managing fi-
nancial assets is at the heart of financial economics, and
hence it is natural to start here. Importantly, as well, it is
the area of finance that is most closely related to practi-
cal life, and it is here where we feel that ignorance about
precision and accuracy can do harm.

Our essay is structured as follows. In the next section,
we will discuss models and how errors may enter them.
We will focus on one model, that of Markowitz. The
key point will be that empirical errors — those resulting
from modelling assumptions and parameter inputs

— are much greater than numerical errors. That will
lead us to heuristics (Section 3) and an illustration of
the accuracy of portfolio models (Section 4). Section s
concludes.

2 Models and Errors

Financial economics, it has been said,’ is about two
questions: (i) how much to save?, and (ii) how to save?
It is hard to overstate the importance of these questions,
both on an individual and on a macroeconomic level.

When it comes to ‘how to save?’, it is fair to say that
work on an answer began with Harry Markowitz in the
1950s. Markowitz argued that risk should receive much
more attention by investors than it had by then, and

he argued that the portfolio matters more than single
assets. These insights lead him to the one-period mean-
variance model.

Over the decades, mean—variance optimisation has de-
veloped into the cornerstone of quantitative portfolio
management. Yet it remains, of course, a model; it is not
the actual problem. The problem is how to save: how to
identify assets that give, loosely speaking, much reward
with little risk. Markowitz’s model is one attempt at
solving the problem, by assuming a simple investment
process (buy-and-hold) and fixing the notions of reward
(mean return) and risk (variance of return).

In general, modelling is the process of putting the ac-
tual problem into a form that can be understood by a
computer.6 The modeller has to define vague notions
such as ‘risk’, and often needs to simplify and approxi-
mate. This, in turn, means errors. Not in the sense that
something went wrong or did not work as expected.

5In Constantinides and Malliaris (1995).

I\ computer is actually not necessary for modelling. Yet, today,
itis hard to conceive an investment model that would not rely on a
computer.

Approximation errors originate from the very practice

of modelling.

Following a classic discussion in

von Neumann and Goldstine (1947), we group

these errors into two categories: empirical errors (model
errors), and numerical errors. The challenge is to not
only acknowledge such errors, but to evaluate them. We
are fortunate in finance because we can often measure
the magnitude of errors in meaningful units, namely
euros, dollars or another currency. Some errors are
simply bigger than others and so matter more. Such

an evaluation is often case-specific, imprecise and may
require interpretation and judgement. But carefully
exploring, quantifying and discussing the effects

of model choices etc. should always be preferred to
dismissing such analysis as ‘out of scope’.

Empirical Errors

A portfolio in Markowitz’s model is, in essence, a re-
turn distribution, which looks good or bad according
to an objective function. How we define this objective
function determines what portfolio we choose. The
word risk for instance is often used synonymously with
return variance, but that is by no means the only pos-
sible definition. A typical objection against variance is
that it penalises upside as well as downside. And indeed,
already in the 19505, Markowitz thought about using
downside semi-variance instead, which corresponds
much better to the financial practitioner’s notion of
risk (Markowitz, 1959). To quantify how relevant these
differences in model specification are, we need to em-
pirically compare” different models with respect to how
they help to solve the actual problem.

There are other factors than the objective function that
affect the quality of a model. Transactions costs for in-
stance may be relevant. A model that includes them
may be better — more accurate — than a model that
does not. That does not mean that we should put ev-
ery detail into the model. Less can be more. Simple
back-of-the-envelope calculations may convince us that
particular details cannot matter. For instance, mod-
elling a portfolio with actual positions sizes (integers)
instead of weights will make a difference only for very
small portfolios. It also matters little that we do not
know the prices at which we actually open or close po-
sitions, which implies that we cannot really know the
weights of assets. But more often, whether a certain
aspect should be modelled or not is not clear from the
start. Thus, we will need to run different models and
evaluate and compare their results. In any case, whether

7'This essentially means careful data analysis and replication. See,
for example, Cohen (1994).



a particular aspect becomes part of the model or not
should be motivated from the view point of the actual
problem; an aspect should not be neglected because it
would make the problem unwieldy or difficult to solve.

Once a model is established, it requires a link to real-
ity, which comes in the form of forecasts and expec-
tations, which often enter as parameters. We can, for
instance, only minimise portfolio variance if we have a
variance—covariance matrix of the assets’ returns. Such
model inputs may be good or bad, and we have another
source of error. The difficulties in forecasting the re-
quired variables are well-described in the literature;

see Brandt (2009) for an overview. And it is not only
the forecasting problem: results are often extremely
sensitive to seemingly minor setup variations, such as
the chosen time horizon (LeBaron and Weigend, 1998;
Acker and Duck, 2007; Gilli and Schumann, 2010).
That makes it difficult to reliably compare models, and
hence it becomes difficult to reject bad models.

Numerical Errors

Once the model and its inputs have been fixed, we need
to solve it. For this, we use a computer, and with it
come two sources of error: round-off error, because

we cannot represent all numbers within finite memory;
and truncation error, because all computations that ‘go
to the limit’, be it zero or infinity, must stop before the
limit is reached.

Round-oft error should rarely be a concern in financial
applications (see also Trefethen, 2008). It can cause
trouble and, more likely, can be a nuisance. But its
impact, when compared with the empirical errors de-
scribed above, is many orders of magnitude smaller.

Truncation error is more relevant to our focus on fi-
nancial optimisation. In principle, we could solve any
optimisation model through random sampling. If we
sampled ever more candidate solutions, we would -
in principle — come arbitrarily close to the model’s so-
lution. But clearly, in most cases that would be an ex-
tremely inefficient way to handle a model.

With heuristics, the methods that we want to advocate
in this essay and that we describe in the next section, we
face a variant of this truncation error. We have not yet
explained what heuristics are, but it suffices to say that
they are iterative numerical methods for solving opti-
misation models. The truncation error results because
heuristics only provide an approximation to the model’s
solution. The quality of this approximation is a func-
tion of the computational effort we make. With more
effort — most easily measured as elapsed computing
time —, we obtain better solutions.

Figure 1: Objective function values for a portfolio se-
lection model with three assets. x- and y-axis show
weights for two assets; the third weight is fixed through
the budget constraint. Upper panel: objective func-
tion is variance. Lower panel: objective function is
Value-at-Risk.
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Of course, only obtaining an approximation of a so-
lution is not satisfactory from the standpoint of op-
timisation theory. After all, a model’s solution is the
optimum; theoretically, there are no better or worse
solutions, only zbe solution.

Within the context of our discussion, this truncation
error that comes with heuristics is simply a lack of pre-
cision. Yet imprecise solutions may still be preferred,
namely when they belong to more-accurate models —
models that would be too difficult to solve precisely.
And it turns out that in portfolio selection most models
are difficult to solve. As an example, Figure 1 shows, in
its upper panel, the variance of a portfolio consisting of
three assets. (Actually the square root of the variance.
The third asset’s weight is fixed through the budget con-
straint.) This is Markowitz’s objective function. In the
lower panel we use the same dataset, but this time the
objective function is Value-at-Risk, a quantile of the
return distribution. The function for Value-at-Risk is



not smooth and a classic method that uses the gradient
may become stuck in a local minimum. But Value-at-
Risk and similar functions that treat risk asymmetrically
are more accurate in the sense that they are conform
more closely with the notion of risk. But such mod-

els are often rejected simply because they cannot be
solved precisely. In finance, many models were writ-

ten the way they are only because they can be solved
precisely. Markowitz himself preferred variance over
semi-variance because he could solve the model.?

This brings us to heuristics, since they were designed to
overcome such local minima, as we will discuss in the
next section. However, let us provide a short summary
first. The key point that we wanted to make is that se-
lecting a financial portfolio is much more than run-
ning an optimisation algorithm. Rather, we move from
the actual problem to a model, and from there to the
model’s solution. (And, of course, we may finally want
to implement the model-solution.) During this process,
errors will be introduced, but what matters is how large
these errors are, and which type — numerical or empir-
ical — matters more. At least on the latter question, we
have a clear view: empirical errors — in particular, any-
thing related to data — are much more important than
numerical difficulties. In other words, researchers and
practitioners should concentrate on empirical errors,
not on numerical issues.

3 Good-enough Methods

The upshot of the view that empirical errors matter
more than numerical errors is good news for any re-
searcher who ever felt that he lacked the tools to solve
a model. Those tools are called heuristics, and we will
describe them in this section.

Different people mean different things when they speak
of heuristics. In a general sense, a heuristic is a decision
rule or modus operandi that (i) often helps to solve a
problem or to make a good decision, and that (i) is
simple. This is roughly the definition of Pearl (1984),
and it is also how computer scientists and programmers
use the word: heuristics as simple rules that provide
good solutions in many cases. Not perfect, but good
enough, and often the best that is available.

8 Markowitz (1959, ch. 9) compares variance and semi-variance in
terms of cost, convenience, familiarity, and desirability; he concludes
that variance is superior in terms of cost, convenience, familiarity -
but not desirability. To be fair, Markowitz in the 1950s lacked the
computing power that alternatives models require; today, we have
this computing power.

In the discussion that follows, we will define heuristics
in a narrower sense: as a class of numerical methods for
solving optimisation models. Such models are typically
written as

minimisey ¢(x, data)

in which ¢ is a scalar-valued function and x is a vector
of decision variables. (With a minus in front of ¢ it
becomes a maximisation model.) Often there will be
further constraints in the model.

We find it helpful to not think in terms of a mathemati-
cal description, but a computer programme:

solutionQuality = function(x, data).

That is, a programme that maps a solution into its qual-
ity, given the data. There is no need for a closed-form
mathematical description of the function. Indeed, in
many applied disciplines there are no closed-form objec-
tive functions. The function ¢ could include an exper-
imental setup, with x the chosen treatment and ¢(x)
the desirability of its outcome; or evaluating ¢ might
require a complicated stochastic simulation, such as an
agent-based model.

Several properties, or requirements, describe an opti-
misation heuristic further (Zanakis and Evans, 1981,
Barr et al., 1995, and Winker and Maringer, 2007, list
similar criteria):

* The method should result in a ‘good’ approxima-
tion of the true optimum, with ‘goodness’ mea-
sured in computing time or solution quality.

* The method should be robust when we change
the model - for instance, when we modify the
objective function or add a constraint — and also
when we increase the problem size. Results should
not vary too much for different parameter settings
for the heuristic.

* The technique should be easy to implement.

* Implementation and application of the technique
should not require subjective elements.

In a broad sense, we can differentiate between two
classes of heuristics, constructive methods and iterative-
search methods.

For a constructive method, an algorithm starts with
an empty solution and adds components step-by-step;
the procedure terminates when it has completed one



solution. An example: a reasonable low-variance eq-
uity portfolio of cardinality N can be constructed by

(i) obtaining forecasts for the marginal variances of all
eligible assets, (ii) sort the assets by forecast variance

and (iii) keep the N assets with the lowest forecast vari-
ances in the portfolio (equally-weighted); see Schumann

(2013).

For iterative-search methods the algorithm moves from
solution to solution, that is, a complete existing solu-
tion is modified to obtain a new solution. Such a new
solution may be quite different from previous ones,

as some methods, such as Genetic Algorithms, create
new solutions in a rather discontinuous ways. But still,
a new solution will share characteristics with its pre-
decessor (if that was not the case, we would be doing
random-sampling). In the remainder of this essay, we
shall concentrate on iterative-search methods.

Principles

The following pseudocode makes the
idea of an iterative method more con-
crete.

. generate initial solution x*

2: while stopping condition not met do
3 create new solution x™ = N(x°)

4 if A(¢p,x",x5,...) then x° = x"
S: end while

6: return x°

We start with a solution x¢, very often a random draw.
Then, in each iteration, the function N (‘neighbour’)
makes a copy of x° and modifies this copy; thus, we get
a new candidate solution x". The function A (‘accept’)
decides whether x™ replaces x¢, typically by comparing
the solutions’ objective function values. The process
repeats until a stopping condition is satisfied; finally, x°
is returned.

This skeleton of an algorithm applies to standard meth-
ods, too. In a gradient-based method, for instance, x
would be a numeric vector; N would evaluate the gra-
dient at x° and then move minus the gradient with a
specified stepsize; A would evaluate x° and x", and re-
place x¢ only if X" is better; if not, the search is stopped.

Heuristics use other, often simpler, mechanisms. More
specifically, two characteristics will show up in one form
or another in most methods. First, heuristics will not
insist on the best possible moves. A heuristic may ac-
cept a new solution X" even if it is worse than the cur-
rent solution. Second, heuristics make use of random-
ness. For instance, a heuristic may change x° randomly
(instead of locally-optimally as in a Gradient Search).
These characteristics make heuristics inefficient for well-

behaved models. But for difficult models — for instance,
such with many local optima as in Figure 1 —, they en-
able heuristics to move away from local optima.”

As a concrete example, suppose we want to select N as-
sets, equally-weighted, out of a large number of assets,
in such a way that the resulting portfolio has a small
variance. We assume that we have a forecast for the
variance—covariance matrix available. Then a simple
method for getting a very good solution to this model is
a Local Search. For a Local Search,

+ the solution x is a list of the included assets;

* the objective function ¢ is a function that com-
putes the variance forecast for a portfolio x;

* the function N picks one neighbour by randomly
removing one asset from the portfolio and adding
another one;

+ the function A compares ¢(x°) and ¢(x"), and if

X" is not worse, accepts it;

* the stopping rule is to quit after a fixed number of
iterations.

Note that Local Search is still greedy in a sense since it
will not accept a new solution that is worse than the
previous one. Thus, if the search arrives at a solution
that is better than all its neighbours, it can never move
away from it — even if this solution is only a local op-
timum. Heuristic methods that build on Local Search
thus employ additional strategies for escaping such local
optima.

And indeed, with a small - but important — variation
we arrive at Simulated Annealing (Kirkpatrick et al.,
1983). This variation concerns the acceptance rule A:

If the new solution is better, accept it, as before. If it is
worse, however, do still accept it, but only with a certain
probability. This probability in turn depends on the
new solution’s quality: the worse it is, the lower the
probability of being accepted. Also, the probability of
acceptance is typically lower in later iterations; that is,
the algorithm becomes more select over time.

9Because of these mechanisms a heuristic could, in principle,
drift farther and farther off a good solution. But practically, that
is very unlikely because every heuristic has a bias towards good
solutions, for instance by always accepting a better solution, but
accepting a worse one only if it is not too bad. Since we repeat this
creating of new candidate solutions thousands of times, we can be
very certain that the scenario of drifting away from a good solution
does practically not occur.



Random Solutions

The most common objection against using heuristics
is that because they explicitly rely on random mecha-
nisms, their solutions are also random. It is then diffi-
cult, it is argued, to evaluate the quality of a solution.
(The discussion in this section builds on Gilli et al.,
2011.)

A naive approach to solving an optimisation model
could be this: randomly generate a large number of
candidate solutions, evaluate all solutions and keep the
best one as the overall solution.

If we repeated this process a second time, our overall so-
lution would probably be a different one. Thus, the
solution x we obtain from this sampling strategy is
stochastic. The difference between the solution and

the true optimum would be a kind of truncation er-
ror, since if we sampled more and more, we should in
theory come arbitrarily close to the optimum. Impor-
tantly, the variability of the solution stems from our
numerical technique; it has nothing to do with the er-
ror terms that we may have in models to account for
uncertainty. Stochastic solutions may occur with non-
stochastic methods, too. Think of search spaces like the
one in Figure 1. Because of the many local minima, even
a a deterministic method such as Gradient Search would
result in different solutions when run from different
starting points.

We can treat the result of a stochastic algorithm as a ran-
dom variable with some distribution D. What exactly
this result is depends on our setting. We will want to
look at the objective function value (ie, the solution
quality), but we may also look at the decision variables
given by a solution (ie, the portfolio weights). All these
quantities of interest we collect in a vector 0. The re-
sult g; of a restart j is a random draw from D.

Of course, we do not know what D looks like. But for a
given model, there is a simple way to find out — we sam-
ple. We run an algorithm a reasonably-large number of
times and each time store ;. From these realisations we
compute the empirical distribution function of the g,

j = 1,..., number-of-restarts as an estimate for D. For
a given model or model class, the shape of the distribu-
tion D will depend on the chosen method. Some tech-
niques will be more appropriate than others and give
less variable and on average better results. The shape

of D will typically also depend on the particular settings
of the method, in particular the number of iterations —
the search time — that we allow for.

Unlike classical optimisation techniques, heuristics can
walk away from local minima; they will not necessar-

ily get trapped. So if we let the algorithm search for
longer, we can hope to find better solutions. For min-
imisation problems, when we increase the number of
iterations, the mass of D will move to the left and the
distribution will become less variable. Ideally, with
ever more computing time, D should degenerate into
a single point, the global minimum. There exist proofs
of this convergence to the global minimum for many
heuristic methods (see Gelfand and Mitter, 198s, for
Simulated Annealing; Rudolph, 1994, for Genetic Al-
gorithms; Gutjahr, 2000, Stiitzle and Dorigo, 2002,
for Ant Colony Optimisation; Bergh and Engelbrecht,
2006, for Particle Swarm Optimisation).

Unfortunately, these proofs provide little help in prac-
tical applications. They often rely on asymptotic argu-
ments, and many such proofs are nonconstructive. For-
tunately, we do not need these proofs to make meaning-
ful statements about the performance of specific meth-
ods. For a given model class, we can run experiments.
Such experiments also help to investigate the sensitivity
of the solutions with respect to different parameter set-
tings for the heuristic. Experimental results are of course
no proof of the general appropriateness of a method,
but they are evidence of how a method performs for a
given class of models; often this is all that is needed for
practical applications.”®

4 Evaluating Accuracy

In this section, we will, by way of an example, illustrate
two aspects of the preceding discussion. First, that fi-
nancial models are sensitive, meaning that small changes
in assumptions lead to sizeable changes in the results.
Second, that the additional randomness that is intro-
duced by using heuristics is minuscule when compared
with the effects of model sensitivity.

Minimum Variance

As a model, we use the long-only minimum-variance
(mv) portfolio. Ignoring expected returns altogether,
as this model does, is equivalent to assuming equal ex-
pected returns for all assets. This assumption is moti-
vated by the difficulties of predicting future returns;
see Brandt (2009) for an overview of analytic and em-

°Qur favourite illustration of ‘no theoretical proof, but empir-
ical evidence’ is Goldbach’s conjecture. In its best-known form, it
states that every even number greater than two is the sum of two
prime numbers. It is a conjecture because to this day, it has not been
proved in all generality. But it has been brute-force—tested for even
extremely large numbers, and it held up. Thus: one can have empir-
ical evidence that a method works well, even if one cannot prove its
optimality.
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pirical results. In consequence, if we cannot really con-
trol the return of a portfolio, then lowering portfolio
risk may still lead to better risk-adjusted performance
(Chan et al., 1999). In fact, there is evidence that low-
risk stocks even yield higher returns than justified by
asset-pricing models (Blitz and van Vliet, 2007). In any
case, even a low-risk portfolio is a risky portfolio and
should command a risk premium. Altogether there ex-
ists convincing empirical evidence that such a purely
risk-based approach leads to portfolios that perform
well in out-of-sample tests. See, for instance, Chan et al,,
1999, for variance minimisation, or Gilli and Schumann,
2011b, for alternative risk functions.

The data set consists of daily prices (adjusted for splits,
etc.) of the 30 stocks that comprise the main German
stock index, the pax." The data span the period from
January 2004 to mid-September 201s.

A Walkforward with an Exact Solution ...

We compute a rolling-window backtest (a ‘walkfor-
ward’) to evaluate the MV strategy. On the last business
day of a month, the algorithm computes a MV portfo-
lio, based on historical data of the past year. Weights are
constrained to lie between zero and 10%. The resulting
portfolio is then held until the next month-end and its
performance is recorded. The overall result consists of
those one-month out-of-sample periods, chained to-

gether.

We solve the optimisation models with a quadratic-
programming (QP) solver. Hence, given the data and
our assumptions, there is no element of chance in the
setup.

The strategy would have returned a respectable 11.8%
per year over the period December 2005 to mid-
September 2015. It is pictured in Figure 2.

... but What a Difference a Day Makes

In many publications we would find this performance
number to more digits. It is, for instance, unfortunate
practice in the industry to compute returns to two dec-
imal places. But such precision is not warranted. To
show why, we run the same backtest again, but this time
rebalance a week earlier every month. In this test, the
overall return drops to 10.8% per year — one whole per-
centage point less.

Our point is certainly not that rebalancing on the last
business day of a month, or on any other particular
day of the month, is a good idea. Rather, we wanted to
demonstrate what difference a small change in the as-

"The data and code are available from
http://enricoschumann.net/data/gilli_accuracy.html.

Figure 2: Performance of Mmv over the period Dec 2005
to Sep 2015.
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sumptions of the model can make. This influence of the
choice of reference days is documented in the literature
(Acker and Duck, 2007); yet, it is widely ignored.

Random Windows

To see the effect of the rebalancing days more clearly, we
run 10 ooo walkforwards with random historical win-
dows and random rebalancing days. The rebalancing
dates are randomly spaced between 20 and 8o business
days apart; the historical windows span between 120 and
s00 business days. The results are shown in Figure 3.
The graphic shows a wide variation of outcomes: the
1oth quantile of annualised returns is 10.6%, the 9oth
quantile is 12.3% (the extremes are 8.8% and 15.8%).

Local Search

To demonstrate the effect and magnitude of uncer-
tainty that a heuristic introduces, we re-do the original
walkforward. So we rebalance on the last day of the
month and use a fixed historical window of 260 busi-
ness days. But this time, we do not optimise with Qp,
but with a Local Search, the method we described Sec-
tion 3. Thus, all the randomness that we may see now
comes from our numerical method; there are no other
random elements in the setup. Figure 4 shows the re-
sults. Compared with the uncertainty introduced by the
assumptions on windows, the uncertainty that comes
with Local Search is negligible: the grey band that repre-
sents the range of outcomes it barely visible.

s Conclusion (and Some Suggestions)

In this essay we have summarised our view on financial
models, their accuracy, and the precision with which
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Figure 3: Performance of 10 ooo walkforwards with
randomly-chosen window sizes. The grey shades in-
dicate different quantiles. Historical windows have a
length of between 120 and soo business days; rebalanc-
ing dates are between 20 and 8o business days apart. A/l
randomness in the results comes through the model and
its assumptions; there is no numeric randomness.
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Figure 4: Performance of 10 ooo walkforwards with a
fixed window size, but performed with a Local Search.
As in Figure 3, the grey shades indicate different quan-
tiles; but note that they are barely visible. A/l ran-
domness in the results comes through the randomness
inherent in Local Search; there are no other elements of
chance in the model.
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they are handled.

Our thesis is that researchers and practitioners in fi-
nance should pay more attention to accuracy and pre-
cision, and, in particular, they should not mistake pre-
cision for accuracy. In our view, too much time is spent
on making models and their solutions precise in the
sense of numerically exact; too little effort is made to
really evaluate the accuracy of models.

To some extent, this can be blamed on division of
labour. Academics, one might argue, merely develop
theoretical models; it is up to the user to properly evalu-
ate them. This argument, however, does not hold water.
For one, as we have said above, exploring or just mak-
ing visible the effects of model choices has always been
better than not even attempting any analysis. The good
news is that this attitude changes, and in many differ-
ent disciplines people turn more and more into poly-
maths rather than narrow specialists, largely because
computers and software have become so much better
(Gilli and Schumann, 2014).

The lack of accuracy in financial models is good news
when it comes to optimisation. Optimisation is an ap-
plied discipline; optimisation algorithms are tools. No
tool requires ‘exact’; ‘good enough’ is all that is needed
(Gilli and Schumann, 2011a). Perversely, a numerically-
precise solution to a model may not just not add qual-
ity, but also give an unwarranted feeling of being on the
safe side. But such a feeling is misplaced: after all, a nu-
merical solution only relates to the model, not to the
actual problem.

But then, is there anything we can do to improve fi-
nancial models and the way they are used? Certainly:
analyses should be much more qualitative, relying on
non-mechanical insights and research. That means,
notably, more exploratory statistics and replication.
Findings should be accepted when they are empirically
replicated.

That does not imply that single studies do not mean
anything. In particular, even a single study can be made
more robust. Resampling methods can go a long way to
serve as robustness and sensitivity checks.
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