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Heuristic optimization methods and their applica-
tion to finance are discussed. Two illustrations of
these methods are presented: the selection of assets
in a portfolio and the estimation of a complicated
econometric model.

Heuristic methods in Finance

Models in finance

Finance is, at its very heart, all about optimization.
In financial theory, decision makers are optimiz-
ers: households maximize their utility, firms max-
imize profits or minimize costs. In more applied
work, we may look for portfolios that best match
our preferences, or for trading rules that find the
ideal point in time for buying or selling an asset.
And of course, the ubiquitous estimation or calibra-
tion of model parameters is nothing but optimiza-
tion.

In this note we will describe a type of numeri-
cal techniques, so-called heuristics, that can be used
to solve optimization models. An optimization
model consists of an objective function and pos-
sibly a number of constraints, i.e., the model is a
precise, mathematical description of a given prob-
lem. But the process of financial modeling com-
prises two stages. We start with an actual problem –
such as “how to invest?” – and translate this prob-
lem into a model; then we move from the model to
its numerical solution. We will be concerned with
the second stage. Yet we cannot overemphasize the
importance of the first stage. It may be interesting
to work on a challenging optimization model, but if
the model is not useful than neither is its solution.

It turns out that many financial models are dif-
ficult to solve. For combinatorial models it is the
size of the search space that causes trouble. Such
problems typically have an exact solution method –
write down all possible solutions and pick the best
one – but this approach is almost never feasible
for realistic problem sizes. For continuous prob-
lems, issues arise when the objective function is

not smooth (e.g., has discontinuities or is noisy), or
there are many local optima. Even in the contin-
uous case we could attempt complete enumeration
by discretizing the domain of the objective function
and running a grid search. But again this approach
is not feasible in practice once the dimensionality of
the model grows.

Researchers and operators in finance often go
a long way to make models tractable, that is, to
formulate them such that they can compute the
quantities of interest either in closed form or with
the computational tools that are at hand. When
it comes to optimization, models are often shaped
such that they can be solved with “classical” opti-
mization techniques like linear and quadratic pro-
gramming. But this comes at a price: we have to
construct the model in such a way that it fulfills
the requirements of the particular method. For in-
stance, we may need to choose a quadratic objective
function, or approximate integers with real num-
bers. To paraphrase John Tukey, when we solve
such a model we get a precise answer but it be-
comes more difficult to say if we have asked the
right question.

An alternative strategy is the use of heuris-
tic optimization techniques, or heuristics for short.
Heuristics aim at providing good and fast approx-
imations to optimal solutions; to stay with Tukey’s
famous statement, heuristics may be described as
seeking approximate answers to the right ques-
tions. (In theory, the solution of a model is the op-
timum; it is not necessary to speak of optimal solu-
tions. But practically a solution is rather the result
that we get from a piece of software, so it is mean-
ingful to distinguish between good and bad solu-
tions.) Optimization heuristics are often very sim-
ple, easy to implement and to use; there are essen-
tially no constraints on the model formulation; and
any changes to the model are quickly implemented.
But of course, there must be a downside: heuris-
tics do not provide the exact solution of the model
but only a stochastic approximation. Yet such an
approximation may still be better than a poor de-
terministic solution or no solution at all. If a model
can be solved with a classical method, it is no use to
try a heuristic. The advantage comes when classical
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methods cannot solve the given model, i.e., when a
model is difficult. Such models are far more com-
mon in finance that is sometimes thought.

What is a heuristic?

The aim in optimization is to

minimize
x

f (x, data)

with f a scalar-valued function, and x a vector
of decision variables. To maximize a function f ,
we minimize − f . In most cases, this optimization
problem will be constrained. Optimization heuris-
tics are a class of numerical methods that can solve
such problems. Well-known examples are Simu-
lated Annealing, Genetic Algorithms (or, more gen-
erally, Evolutionary Algorithms) or Tabu Search. It
is hard to give a general definition of what con-
stitutes a heuristic. Typically, the term is charac-
terized through several criteria such as the follow-
ing (e.g., Zanakis and Evans [12], Barr et al. [2]):
(i) the method should give a “good” stochastic ap-
proximation of the true optimum, with “goodness”
measured by computing time or solution quality,
(ii) the method should be robust to changes in
the given problem, in particular the problem size,
(iii) the technique should be easy to implement, and
(iv) implementing and using the technique should
not require any subjective elements. Of course,
such a definition is not unambiguous, and even in
the optimization literature the term is used with
different meanings.

How do heuristics work?

Very roughly, we can divide heuristics into iter-
ative search methods and constructive methods.
Constructive methods start with an empty solution
and then build a solution in a stepwise manner by
adding components until a solution is completed.
An example: in a Traveling Salesman Problem we
are given a set of cities and the distances between
them. The aim is to find the route of minimal length
such that each city is visited once. We could start
with one city and then add the remaining cities one
at a time (e.g., always choosing the nearest city) un-
til a complete tour is created. The procedure termi-
nates once we have found one complete solution.

For iterative search methods, we repeatedly
change an existing complete solution to obtain a
new solution. Such methods are far more relevant

in finance, so we will concentrate on them. To de-
scribe an iterative search method, we need to spec-
ify (i) how we generate new solutions from existing
solutions, (ii) when to accept such a new solution,
and (iii) when to stop the search. These three de-
cisions define a particular method; in fact, they are
the building blocks of many optimization methods,
not just of heuristics. As an example, think of a
steepest descent method. Suppose we have a cur-
rent (or initial) solution xc and want to find a new
solution xn. Then the rules could be as follows:

(i) We estimate the slope (the gradient) of f at xc

which gives us the search direction. The new
solution xn is then xc − step size · ∇ f (xc).

(ii) If f (xn) < f (xc) we accept xn, i.e., we re-
place xc by xn.

(iii) We stop if no further improvements in f can
be found, or if we reach a maximum number
of function evaluations.

Problems will mostly occur with steps (i)
and (ii). There are models in which the gradi-
ent does not exist, or cannot be computed mean-
ingfully (e.g., when the objective function is not
smooth). Hence we may need other approaches
to compute a search direction. The acceptance-
criterion for a steepest descent is strict: if there is no
improvement, a candidate solution is not accepted.
But if the objective function has several minima,
this means we will never be able to move away
from a local minimum, even if it is not the globally
best one.

Heuristics follow the same basic pattern (i)–(iii),
but they have different rules that are better suited
for problems with noisy objective functions or mul-
tiple minima. In fact, almost all heuristics use one
or both of the following principles.

Trust your luck Classical methods are determinis-
tic: given a starting value, they will always
lead to the same solution. Heuristics make
deliberate use of randomness. New solutions
may be created by randomly changing old so-
lutions, or we may accept new solutions only
with a given probability.

Don’t be greedy When we compute new candi-
date solutions in the steepest descent method,
we choose a (locally) optimal search direction
(it is steepest descent after all). Many heuris-
tics put up with “good” search directions, in
many cases even random directions. Also,
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heuristics generally do not enforce contin-
uous improvements; inferior solutions may
be accepted. This is inefficient for a well-
behaved problem with a single optimum, but
it allows these methods to move away from
local minima.

As a concrete example, we look at Threshold
Accepting (a variant of Simulated Annealing).

(i) We randomly choose an xn close to xc. For in-
stance, when we estimate the parameter val-
ues of a statistical model, we could randomly
pick one of the parameters and perturb it by
adding a bit of noise.

(ii) If f (xn) < f (xc) we accept xn, as before. But
if f (xn) > f (xc), we also accept it as long
as f (xn)− f (xc) is smaller than a fixed thresh-
old (which explains the method’s name), i.e.,
we accept a new solution that is worse than
its predecessor, as long as it is not too much
worse. Thus, we can think of Threshold Ac-
cepting as a biased random walk. (Simulated
Annealing works the same, but we would ac-
cept an inferior solution with a certain proba-
bility.)

(iii) We stop, say, after a fixed number iterations.

Stochastic solutions

Almost all heuristics are stochastic algorithms.
Running the same technique twice, even with the
same starting values, will typically result in differ-
ent solutions. Thus, we can treat the result (i.e.,
the decision variables x and the associated objective
function value) of a optimization heuristic as a ran-
dom variable with some distribution D. We do not
know what D looks like, but there is a simple way
to find out for a given problem: we run a reason-
ably large number of restarts, for each restart we
store the results, and finally we compute the em-
pirical distribution function of these results as an
estimate for D. For a given problem (often problem
class), the shape of D will depend on the chosen
method. Some techniques will be more appropri-
ate than others and give less variable and on aver-
age better results. And D will often depend on the
settings of the method, most importantly the num-
ber of iterations – the search time – that we allow
for.

Unlike classic optimization techniques, heuris-
tics can escape from local minima. Intuitively then,
if we let the algorithm search for longer, we can
hope to find better solutions. Thus the shape of D
is strongly influenced by the amount of computa-
tional resources spent (often measured by the num-
ber of objective function evaluations). For min-
imization problems, when we increase computa-
tional resources, the mass of D will move to the
left, and the distribution will become less variable.
Ideally, when we let the computing time grow ever
longer, D should degenerate into a single point, the
global minimum. Unfortunately, it’s never possible
to ensure this practically.

Illustrations

Asset selection with Local Search

We can make these ideas more concrete through an
example, taken from Gilli et al. [5]; sample code is
given in the book. Suppose we have a universe of
500 assets (for example, mutual funds), completely
described by a given variance–covariance matrix,
and we are asked to find an equal-weight portfolio
with minimal variance under the constraints that
we have only between Kinf and Ksup assets in the
portfolio. This is a combinatorial problem, and here
are several strategies to obtain a solution.

(1) Write down all portfolios with feasible cardi-
nality, compute the variance of each portfolio,
and pick the one with the lowest variance.

(2) Choose k portfolios randomly and keep the
one with the lowest variance.

(3) Sort the assets by their marginal variance.
Then construct an equal-weight portfolio of
the Kinf assets with the lowest variance, then a
portfolio of the Kinf + 1 assets with the lowest
variance, and so on to a portfolio of the Ksup
assets with the lowest variance. Of those
Ksup − Kinf + 1 portfolios, pick the one with
the lowest variance.

Approach (1) is infeasible. Suppose we were to
check cardinalities between 100 and 150. For 100
out of 500 alone we have 10107 possibilities, and
that leaves us 101 out of 500, 102 out of 500, and
so on. Even if we could evaluate millions of portfo-
lios in a second it would not help. Approach (2)
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has the advantage that it is simple, and we can
scale computational resources (increase k). That is,
we can use the trade-off between available comput-
ing time and solution quality. Approach (2) can be
thought of as a sample substitute for Approach (1).
In Approach (3) we ignore the covariation of as-
sets (i.e., we only look at the main diagonal of the
variance–covariance matrix), but we only have to
check Ksup − Kinf + 1 portfolios. There may be
cases, however, in which we would wish to include
correlation.

We set up an experiment. We create an artifi-
cial data set of 500 assets, each with a randomly
assigned volatility (the square root of variance) of
between 20% and 40%. Each pairwise correlation
is set to 0.6. We compute “best-of-k” portfolios (i.e.,
Approach (2)): we sample 1000 portfolios, and only
keep the best one; we also try “best-of-100 000”
portfolios and, for intuition, “best-of-1” portfolios
(i.e., purely random ones).

Figure 1, in its upper panel, shows the esti-
mated cumulative distribution functions of port-
folio volatilities; each curve is obtained from 500
restarts. Such an empirical distribution function
is an estimate of D for the particular method. We
see that completely random portfolios produce a
distribution with a median of about 23.5%. (What
would happen if we drew more portfolios? The
shape of D would not change, since we are merely
increasing our sample size. But our estimates of
the tails would become more precise.) We also plot
the distribution of the “best-of-1000” and “best-of-
100 000” portfolios. For this latter strategy, we get
a median volatility below 21%. We also add the re-
sults for Approach (3); there are no stochastics in
this strategy.

Now let us try a heuristic. We use a simple Local
Search. We start with a random feasible portfolio
and compute its volatility. This is our current solu-
tion xc, the best solution we have so far. We now try
to improve it iteratively. In each iteration we com-
pute a new portfolio xn as follows. We randomly
pick one asset from our universe. If this asset is al-
ready in the portfolio, we remove it; if it is not in the
portfolio, we add it. Then we compute the volatil-
ity of this new portfolio. If it is lower than the old
portfolio’s volatility, we keep the new portfolio, i.e.,
xn replaces xc; if not, we stick with xc. We include
constraints in the simplest way: if a new portfolio
has too many or too few assets, we always consider
it worse than its predecessor and reject it. We run

this search with 100, 1000, and 10 000 iterations. For
each setting, we conduct 500 restarts; each time we
register the final portfolio’s volatility. Results are
shown in the lower panel of Figure 1.
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Figure 1: Upper panel: random portfolios. For ex-
ample: for one restart of the “best-of-100 000” strat-
egy, we sample 100 000 portfolios, and keep the
best one. The distributions are estimated from 500
restarts. The sort-by-marginal-variance approach
is deterministic, so its result is a constant. Lower
panel: Local Search. Each distribution is estimated
from 500 restarts.

Already with 1000 iterations we are clearly bet-
ter than the “best-of-100 000” strategy (though we
have used only one-hundredth of the function eval-
uations). With 10 000 iterations we seem to con-
verge to a point at about 16%. A few remarks: first,
we have no proof that we have found the global
optimum. But we can have some confidence that
we have found a good solution. Second, we can
practically make the variance of D as small as we
want. With more iterations (and possibly a few
other refinements), we could, for all practical pur-
poses, have the distribution “converge”. But, third,
in many cases we do not need to have D collapse;
for financial problems a good solution is fine, given
the quality of financial data [6, 7].
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Econometric model fitting with Differen-
tial Evolution

Our second illustration is taken from Mullen et al.
[8], who consider the estimation of a Markov-
switching GARCH (MSGARCH) model. MS-
GARCH are econometric models used to forecast
the volatility of financial time series, which is of
primary importance for financial risk management.
The estimation of MSGARCH models is a non-
linear constrained optimization problem and is a
difficult task in practice. A robust optimizer is thus
required. In that regard, the authors report the best
performance of the Differential Evolution (DE) al-
gorithm compared with traditional estimation tech-
niques.

DE is a search heuristic introduced by Storn
and Price [10] and belongs to the class of evolu-
tionary algorithms. The algorithm uses biology-
inspired operations of crossover, mutation, and se-
lection on a population in order to minimize an ob-
jective function over the course of successive gener-
ations. Its remarkable performance as a global op-
timization algorithm on continuous problems has
been extensively explored; see, e.g., Price et al. [9].

Let NP denote the number of parameter vec-
tors (members) x ∈ Rd in the population, where
d denotes the dimension. In order to create the ini-
tial generation, NP guesses for the optimal value
of the parameter vector are made, either using ran-
dom values between bounds or using values given
by the user. Each generation involves creation of a
new population from the current population mem-
bers {xi | i = 1, . . . , NP}, where i indexes the vec-
tors that make up the population. This is accom-
plished using differential mutation of the population
members. An initial mutant parameter vector vi is
created by choosing three members of the popula-
tion, xi1 , xi2 and xi3 , at random. Then vi is gen-
erated as vi = xi1 + F · (xi2 − xi3), where F is a
positive scale factor whose effective values are typ-
ically less than one. After the first mutation opera-
tion, mutation is continued until d mutations have
been made, with a given crossover probability. The
crossover probability controls the fraction of the pa-
rameter values that are copied from the mutant.
Mutation is applied in this way to each member of
the population. The objective function values as-
sociated with the children are then determined. If
a trial vector has equal or lower objective function
value than the previous vector it replaces the previ-
ous vector in the population; otherwise the previ-

ous vector remains. Note that DE uses both strate-
gies described above to overcome local minima: it
does not only keep the best solution but accepts in-
ferior solutions, too; the method evolves a whole
population of solutions in which some solutions are
worse than others. And DE has a chance ingredient
as it randomly chooses solutions to be mixed and
mutated. For more details, see Price et al. [9] and
Storn and Price [10].

We report below some results of Mullen et al.
[8], who fit their model to the Swiss Market In-
dex. For the DE optimization, the authors rely on
the package DEoptim [1] which implements DE in
the R language [3]. For comparison, the model is
also estimated using standard unconstrained and
constrained optimization routines available in R
as well as more complex methods able to handle
non-linear equality and inequality constraints. The
model estimation is run 50 times for all optimiza-
tion routines, where random starting values in the
feasible parameter set are used when needed (us-
ing the same random starting values for the various
methods). Boxplots of the objective function (i.e.,
the negative log-likelihood function, which must
be minimized) at optimum for convergent estima-
tions is displayed in Figure 2. We notice that stan-
dard approaches (i.e., function optim with all meth-
ods) perform poorly compared with the optimiz-
ers that can handle more complicated constraints
(i.e., functions constrOptim, constrOptim.nl and
solnp). DE compares favorably with the two best
competitors in terms of negative log-likelihood val-
ues and is more stable over the runs.

Conclusion

In this note, we have briefly described optimization
heuristics, but of course we could only scratch the
surface of how these methods work and where they
can be applied. After all, for most people optimiza-
tion is a tool, and what matters is how this tool is
applied. Heuristics offer much in this regard: they
allow us to solve optimization models essentially
without restrictions on the functional form of the
objective function or the constraints. Thus, when
it comes to evaluating, comparing, and selecting
models, researchers and operators can focus more
on a model’s financial or empirical qualities instead
of having to worry about how to handle it numer-
ically. We have argued initially that financial mod-
eling comprises two stages: putting an actual prob-
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Figure 2: Boxplots of the 50 values of the objective function (i.e., the negative log-likelihood) at opti-
mum obtained by the various optimizers available in R. Function optim with method "Nelder-Mead" (un-
constrained), method "BFGS" (unconstrained), method "CG" (unconstrained), method "L-BFGS-B" (con-
strained), method "SANN" (unconstrained), function constrOptim (constrained), function constrOptim.nl

of the package alabama [11], function solnp of the package Rsolnp [4], function DEoptim of the package
DEoptim [1]. More details can be found in Mullen et al. [8].

lem into model form, and then solving this model.
With heuristics, we become much more powerful at
the second stage; it remains to use this power in the
first stage.
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